Skip to main content
Log in

Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

To make more accurate predictions of the effective thermal conductivity (ETC) of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with controlled shape characteristics is reconstructed. In addition, the geometric vertices of the reconstructed particles are used to characterize the morphology of inclusions with complex profile in two-dimensional isotropic elasticity, and its explicit expression for the Eshelby tensor are explored. Moreover, the material mismatch between the particles and the matrix phase is simulate using a continuously distributed source field based on the Eshelby's equivalent inclusion method. The relationship between micro-structure and effective performance is established. Finally, the effective thermal conductivity of CuCr alloys was predicted using the ETC prediction model. Through the comparison of the numerical simulations, experiments, and calculations, the results show that the ETC model has reliable predictive capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. X.H. Qu, L. Zhang, M. Wu, S. Bin Ren, Prog. Nat. Sci. Mater. Int. 21, 189–197 (2011)

    Article  Google Scholar 

  2. I.L. Ngo, C. Byon, Int. J. Heat Mass Transf. 90, 727–734 (2015)

    Article  Google Scholar 

  3. M. Koru, K. Büyükkaya, M. Kan, Int. J. Thermophys. 43, 1 (2022)

    Article  Google Scholar 

  4. M. James Clerk, A Treatise on Electricity and Magnetism (2010).

  5. D.S. McLachlan, M. Blaszkiewicz, R.E. Newnham, J. Am. Ceram. Soc. 73, 2187–2203 (1990)

    Article  Google Scholar 

  6. F. Gori, S. Corasaniti, Int. Commun. Heat Mass Transf. 47, 1–6 (2013)

    Article  Google Scholar 

  7. L.E. Nielsen, Ind. Eng. Chem. Fundam. 13, 17–20 (1974)

    Article  Google Scholar 

  8. S.C. Cheng, R.I. Vachon, Int. J. Heat Mass Transf. 12, 249–264 (1969)

    Article  Google Scholar 

  9. M. Kandula, J. Porous Media 14, 919–926 (2011)

    Article  Google Scholar 

  10. A. Popov, A. Eremin, D. Bragin, Int. J. Thermophys. 44, 17 (2023)

    Article  ADS  Google Scholar 

  11. E. Raschektaeva, S. Stankus, Int. J. Thermophys. 44, 65 (2023)

    Article  ADS  Google Scholar 

  12. M. Wang, N. Pan, J. Wang, S. Chen, J. Colloid Interface Sci. 311, 562–570 (2007)

    Article  ADS  Google Scholar 

  13. P. Yin, G.F. Zhao, Int. J. Rock Mech. Min. Sci. 70, 82–89 (2014)

    Article  Google Scholar 

  14. K. Ogbuanu, R.V. Roy, Int. J. Heat Mass Transf. 197, 123377 (2022)

    Article  Google Scholar 

  15. B. Zhao, J. Wang, Powder Technol. 291, 262–275 (2016)

    Article  Google Scholar 

  16. P. Gao, Y. Song, M. Song, P. Qian, Y. Su, Scr. Mater. 213, 114627 (2022)

    Article  Google Scholar 

  17. S. Gayathri Monicka, D. Manimegalai, M. Karthikeyan, Renew. Energy Focus 43, 183 (2022)

    Article  Google Scholar 

  18. Y. Lin, C. Li, J. Ma, M. Lei, L. Huang, J. Nat. Gas Sci. Eng. 104, 104684 (2022)

    Article  Google Scholar 

  19. H. Hiroshi, T. Minoru, Int. J. Eng. Sci. 24, 239–252 (1986)

    Article  Google Scholar 

  20. M. G. D’Urso, Int. Assoc. Geod. Symp. (2012).

  21. M.G. D’Urso, J. Geod. 87, 239–252 (2013)

    Article  ADS  Google Scholar 

  22. M.G. D’Urso, Surv. Geophys. 36, 391–425 (2015)

    Article  ADS  Google Scholar 

  23. A.R.J. Hussain, A.A. Alahyari, S.A. Eastman, C. Thibaud-Erkey, S. Johnston, M.J. Sobkowicz, Appl. Therm. Eng. 113, 1118–1127 (2017)

    Article  Google Scholar 

  24. L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, T.J. Goh, Thermochim. Acta 430, 155–165 (2005)

    Article  Google Scholar 

  25. Y.X. Fu, Z.X. He, D.C. Mo, S.S. Lu, Appl. Therm. Eng. 66, 358–374 (2014)

    Google Scholar 

  26. S. Zhai, P. Zhang, Y. Xian, J. Zeng, and B. Shi, Int. J. Heat Mass Transf. 117, (2018).

  27. N. Bonfoh, F. Dinzart, H. Sabar, Appl. Math. Model. 87, 584–605 (2020)

    Article  MathSciNet  Google Scholar 

  28. H. Le Quang, T.L. Phan, G. Bonnet, Int. J. Therm. Sci. 50, 1428–1444 (2011)

    Article  Google Scholar 

  29. W. Yu, F. Wang, Y. Wang, and Y. Wang, MRS Commun. XX, 1 (2022).

  30. X. Zhang, X. Guo, K. Song, X. Wang, J. Feng, S. Li, H. Lin, Mater. Today Commun. 37(12), 2108017 (2021)

    Google Scholar 

  31. B. Hay, O. Beaumont, N. Fleurence, N. Lambeng, M. Cataldi, C. Lorrette, K. Knopp, J. Hartmann, F. Beckstein, D. Stobitzer, N. Milošević, N. Stepanić, J. Wu, P. Mildeova, Int. J. Thermophys. 44, 1 (2023)

    Article  Google Scholar 

  32. A. Farooqui, J. Wu, R. Morrell, L. Wright, M. Pekris, and M. Whiting, To Be Submitt. to Int. J. Thermophys. 44:47 (2023)

Download references

Funding

No support was received from any organization/person.

Author information

Authors and Affiliations

Authors

Contributions

ZC and FW wrote the main manuscript text. WY prepared Table 1 and 2, Figs. 1, 2, 3, 4, 5 and 9. YW prepared Table 1 and Figs. 6, 7, 8, 10, 11. All author reviewed the manuscript.

Corresponding author

Correspondence to Fazhan Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wang, F., Yu, W. et al. Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application. Int J Thermophys 44, 94 (2023). https://doi.org/10.1007/s10765-023-03204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03204-3

Keywords

Navigation