Skip to main content
Log in

Analysis of surface asperity flattening based on two different methods

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The stress state is an important parameter in metal forming processes, which significantly influences the strain state and microstructure of products, affecting their surface qualities. In order to make the metal products have a good surface quality, the surface stress state must be optimised. In this study, two classical methods, the upper bound method and the crystal plasticity finite element method, were investigated. The differences between the two methods were discussed in regard to the model, the velocity field, and the strain field. Then the related surface roughness is deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Degarmo E.P., Black J.T., Kohser R.A.: Materials and Processes in Manufacturing (9th ed.). Wiley, New York (2003)

    Google Scholar 

  2. Osakada K., Oyane M.: On the roughing of free surface in deformation process. Bull. JSME 14, 171–177 (1971)

    Article  Google Scholar 

  3. Tokizawa M., Yosikawa Y.: The mechanism of lubricant trapping under the cold compression of metals. J. Jpn. Inst. Met. 37, 19–25 (1973)

    Google Scholar 

  4. Chen G., Shen H., Hu S., Baudelet B.: Roughening of the free surfaces of metallic sheets during stretching forming. Mat. Sci. Eng A. 128, 33–38 (1990)

    Article  Google Scholar 

  5. Becker R.: Effect of strain localization on surface roughening during sheet forming. Acta Mater. 46, 1385–1401 (1998)

    Article  Google Scholar 

  6. Stoudt M.R., Ricker R.E.: The relationship between grain size and the surface roughening behaviour of Al–Mg alloys. Mater. Trans. A. 33, 2883–2889 (2002)

    Article  Google Scholar 

  7. Sheu S., Wilson W.R.D.: Flattening of work piece surface asperities in Metal forming. Proc NAMRC XI, 172–178 (1983)

    Google Scholar 

  8. Wilson W.R.D., Lee W.M.: Mechanics of surface roughening in metal forming process. J. Manuf. Sci. Eng. 123, 279–283 (2001)

    Article  Google Scholar 

  9. Makinouchi A., Ike H., Murakawa M., Koga N.: A finite element analysis of flattening of surface asperities by perfectly lubricated rigid dies in metal working processes. Wear 128, 109–122 (1988)

    Article  Google Scholar 

  10. Sutcliffe M.P.F.: Surface asperity deformation in metal forming processes. Int. J. Mech. Sci. 11, 847–868 (1988)

    Article  Google Scholar 

  11. Dieter G.E.: Mech, Metall. 3rd. McGraw-Hill, New York, NY (1986)

    Google Scholar 

  12. Wilson W.R.D.: Tribology in Cold Metal Forming. J. Manu. Sci. Eng. 119, 695–698 (1997)

    Article  Google Scholar 

  13. Groche P., Schafer R., Justinger H., Ludwig M.: On the correlation between crystallographic grain size and surface evolution in metal forming processes. Int. J. Mech. Sci. 52, 523–530 (2010)

    Article  Google Scholar 

  14. Groche, P., Schafer, R., Henning, M.: Finite element calculation of surface Evolution considering grain size and crystallographic texture effects, Proceedings of ICTMP2007.Yokohama: Yokohama National University, 219–226 (2007)

  15. Nagpal Vijay.: A lower upper-bound approach to some metal forming problems, Ph.D Thesis, Georgia Institute of Technology (1974)

  16. Bramley A.N., Osman F.H.: Numerical modelling of material deformation processes. Springer, London (1992)

    Google Scholar 

  17. Asaro R.J., Needleman A.: Texture development and strain hardening in rate dependent polycrystals. Acta Mater. 33, 923–953 (1985)

  18. Hill R., Rice J.R.: Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids. 20, 401–413 (1972)

    Article  ADS  MATH  Google Scholar 

  19. Pierce D., Asaro R.J., Needleman A.: An analysis of non-uniform and localized deformation in ductile single crystals. Acta Mater. 30, 1087–1119 (1982)

    Article  Google Scholar 

  20. Kroner E.: On the plastic deformation of polycrystals. Acta Mater. 9, 155–161 (1961)

    Article  Google Scholar 

  21. Kroner E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Berlin (1958)

    Book  MATH  Google Scholar 

  22. Kroner, E.: In: Physics of defects. Amsterdam: North-Holland Publishing Company (1981)

  23. Kroner E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration Mech. Anal. 4, 273–334 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee E.H., Liu D.T.: Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys. 38, 19–27 (1967)

    Article  ADS  Google Scholar 

  25. Li, H.J.: A study of surface roughness in the metal forming process, Ph.D Thesis, UOW (2012)

  26. Li H.J., Jiang Z.Y., Wei D.B.: Crystal plasticity finite modelling of 3D surface asperity flattening in uniaxial planar compression. Tribol. Lett. 46, 101–112 (2012)

    Article  Google Scholar 

  27. Ebrahimi R., Reihanian M., Kanaani M., Moshksar M.M.: An upper-bound analysis of the tube extrusion process. J. Mater. Process. Technol. 199, 214–220 (2008)

    Article  Google Scholar 

  28. Komori K.: An upper bound method for analysis of three-dimensional deformation in the flatting rolling of bars. Int. J. Mech. Sci. 44, 37–55 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hejie Li.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Öchsner, A., Ni, G. et al. Analysis of surface asperity flattening based on two different methods. Continuum Mech. Thermodyn. 28, 1623–1634 (2016). https://doi.org/10.1007/s00161-016-0496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0496-z

Keywords

Navigation