Skip to main content
Log in

Strain gradient plasticity modeling and finite element simulation of Lüders band formation and propagation

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

An analytical solution of the problem of the propagation of a Lüders band in an isotropic strain gradient plasticity medium is provided based on a softening–hardening constitutive law. A detailed description is given of the plastic strain distribution in the finite size band front. The solution is shown to be harmonic in the band front and exponential in the band tail. Particular attention is paid to the conditions to be applied at the interface between both regions. This solution is then used to validate finite element simulations of the Lüders band formation and propagation in a plate in tension. The approach is shown to suppress the spurious mesh dependence exhibited by conventional finite element simulations of the Lüders behavior and to provide a finite width band front in agreement with the experimental observations from strain field measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis E.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)

    Article  Google Scholar 

  2. Aifantis E.C.: The physics of plastic deformation. Int. J. Plasticity 3, 211–248 (1987)

    Article  MATH  Google Scholar 

  3. Anand L., Aslan O., Chester S.: A large-deformation gradient theory for elastic–plastic materials: strain softening and regularization of shear bands. Int. J. Plasticity 30–31, 116–143 (2012)

    Article  Google Scholar 

  4. Ballarin V., Perlade A., Lemoine X., Bouaziz O., Forest S.: Mechanisms and modeling of bake-hardening steels: Part II. Complex loading paths. Metall. Mater. Trans. A 40, 1367–1374 (2009)

    Article  Google Scholar 

  5. Ballarin V., Soler M., Perlade A., Lemoine X., Forest S.: Mechanisms and modelling of bake-hardening steels: Part I. Uniaxial tension. Metall. Mater. Trans. 40, 1367–1374 (2009)

    Article  Google Scholar 

  6. Belotteau J., Berdin C., Forest S., Parrot A., Prioul C.: Mechanical behavior and crack tip plasticity of a strain aging sensitive steel. Mater. Sci. Eng. A 526(1–2), 156–165 (2009)

    Article  Google Scholar 

  7. Besson J., Cailletaud G., Chaboche J.L., Forest S.: Non Linear Mechanics of Materials. Springer, Berlin (2009)

    Google Scholar 

  8. Besson J., Foerch R.: Large scale object-oriented finite element code design. Comput. Meth. Appl. Mech. Eng. 142, 165–187 (1997)

    Article  ADS  MATH  Google Scholar 

  9. de Borst R., Sluys L., Mühlhaus H., Pamin J.: Fundamental issues in finite element analyses of localization of deformation. Eng. Comput. 10, 99–121 (1993)

    Article  Google Scholar 

  10. Butler J.F.: Lüders front propagation in low carbon steels. J. Mech. Phys. Solids 10, 313–334 (1962)

    Article  ADS  Google Scholar 

  11. Cordero N.M., Forest S., Busso E.P.: Generalised continuum modelling of grain size effects in polycrystals. Comptes Rendus Mécanique 340, 261–274 (2012)

    Article  ADS  Google Scholar 

  12. Cottrell A.H., Bilby B.A.: Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. A 62(1), 49–62 (1949)

    Article  ADS  Google Scholar 

  13. Dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and intersticial working allowed by the principle of virtual power. C.R. Acad. Sci. Paris IIb 321, 303–308 (1995)

    MATH  Google Scholar 

  14. Dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “la D’Alembert”. Zeitschrift fr Angewandte Mathematik und Physik 63, 1119–1141 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Dimitrijevic B., Hackl K.: A regularization framework for damage plasticity models via gradient enhancement of the free energy. Int. J. Numer. Meth. Biomed. Eng. 27, 1199–1210 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dingley D.J., McLean D.: Components of the flow stress of iron. Acta Metall. 15, 885–901 (1967)

    Article  Google Scholar 

  17. Enakoutsa K., Leblond J.: Numerical implementation and assessment of the GLPD micromorphic model of ductile rupture. Eur. J. Mech. A/solids 28, 445–460 (2009)

    Article  ADS  MATH  Google Scholar 

  18. Engelen R., Geers M., Baaijens F.: Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int. J. Plasticity 19, 403–433 (2003)

    Article  MATH  Google Scholar 

  19. Ferretti, M., Madeo, A., Dell’Isola, F., Seppecher, P., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift für Angewandte Mathematik und Physik (2013)

  20. Forest, S.: Strain localization phenomena in generalized crystal plasticity. In: Second Euroconference and International Symposium on Material Instabiblities in Deformation and Fracture, Journal of the Mechanical Behavior of Materials, vol. 11, pp. 45–50. organized by E.C. Aifantis, Aristotle Technical University, Thessaloniki, Greece (1997)

  21. Forest S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)

    Article  Google Scholar 

  22. Forest S., Aifantis E.C.: Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2010)

    Article  MATH  Google Scholar 

  23. Forest S., Bertram A.: Formulations of strain gradient plasticity. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds) Mechanics of Generalized Continua, Advanced Structured Materials, Vol. 7, pp. 137–150. Springer, Berlin (2011)

    Chapter  Google Scholar 

  24. Forest S., Blazy J., Chastel Y., Moussy F.: Continuum modelling of strain localization phenomena in metallic foams. J. Mater. Sci. 40, 5903–5910 (2005)

    Article  ADS  Google Scholar 

  25. Forest S., Sievert R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  26. Fressengeas C., Beaudoin A., Lebyodkin M., Kubin L., Estrin Y.: Dynamic strain aging: a coupled dislocation-solute dynamic model. Mater. Sci. Eng. 51, 226–230 (2005)

    Article  Google Scholar 

  27. Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus, première partie: théorie du second gradient. J. de Mécanique 12, 235–274 (1973)

    MATH  MathSciNet  Google Scholar 

  28. Germain P.: The method of virtual power in continuum mechanics. part 2: Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  29. Graff, S., Forest, S., Strudel, J.L., Prioul, C., Pilvin, P., Béchade, J.L.: Strain localization phenomena associated with static and dynamic strain ageing in notched specimens: experiments and finite element simulations. Mater. Sci. Eng. A 387–389:181–185 (2004)

    Google Scholar 

  30. Graff S., Forest S., Strudel J.L., Prioul C., Pilvin P., Béchade J.L.: Finite element simulations of dynamic strain ageing effects at V-notches and crack tips. Scripta Materialia 52, 1181–1186 (2005). doi:10.1016/j.scriptamat.2005.02.007

    Article  Google Scholar 

  31. Gurtin M.: On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients. Int. J. Plasticity 19, 47–90 (2003)

    Article  MATH  Google Scholar 

  32. Hähner P.: Modelling the spatio-temporal aspects of the Portevin–Le Chatelier effect. Mater. Sci. Eng. A 164, 23–34 (1993)

    Article  Google Scholar 

  33. Hähner P., Kubin L.P.: Coherent propagative structures in plastic deformation: a theory of lüders bands in polycrystals. Solid State Phenomena 23–24, 385–402 (1992)

    Article  Google Scholar 

  34. Kochmann D., Hackl K.: The evolution of laminates in finite crystal plasticity: a variational approach. Contin. Mech. Thermodyn. 23, 65–85 (2011)

    ADS  MathSciNet  Google Scholar 

  35. Kok S., Bharathi M., Beaudoin A., Fressengeas C., Ananthakrishna G., Kubin L., Lebyodkin M.: Spatial coupling in jerky flow using polycristal plasticity. Acta Materialia 51, 3651–3662 (2003)

    Article  Google Scholar 

  36. Kubin L., Estrin Y.: The Portevin–Le Chatelier effect in deformation with constant stress rate. Acta Mater. 33, 397–407 (1985)

    Article  Google Scholar 

  37. Kyriakides S., Miller J.E.: On the propagation of Lüders bands in steel strips. J. Appl. Mech. 67, 645–654 (2000)

    Article  ADS  MATH  Google Scholar 

  38. Lambrecht M., Miehe C., Dettmar J.: Energy relaxation of non-convex incremental stress potentials in a strain-softening elastic–plastic bar. Int. J. Solids Struct. 40(6), 1369–1391 (2003)

    Article  MATH  Google Scholar 

  39. Liebe T., Menzel A., Steinmann P.: Theory and numerics of geometrically non-linear gradient plasticity. Int. J. Eng. Sci. 41, 1603–1629 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  40. Liebe T., Steinmann P., Benallal A.: Theoretical and computational aspects of a thermodynamically consistent framework for geometrically linear gradient damage. Comp. Methods Appl. Mech. Eng. 190, 6555–6576 (2001)

    Article  MATH  Google Scholar 

  41. Lomer W.M.: The yield phenomenon in polycrystalline mild steel. J. Mech. Phys. Solids 1, 64–73 (1952)

    Article  ADS  Google Scholar 

  42. Louche H., Chrysochoos A.: Thermal and dissipative effects accompanying Lüders band propagation. Mater. Sci. Eng. 307, 15–22 (2001)

    Article  Google Scholar 

  43. Lüders W.: Über die Äusserung der Elasticität an stahlartigen Eisenstäben und Stahlstäben, und über eine beim Biegen solcher Stäbe beobachtete Molecularbewegung. Dinglers Polytech J 5, 18–22 (1860)

    Google Scholar 

  44. Marais A., Mazière M., Forest S., Parrot A., Le Delliou P.: Identification of a strain-aging model accounting for lüders behavior in a c-mn steel. Philos. Mag. 92(28–30), 3589–3617 (2012)

    Article  ADS  Google Scholar 

  45. Maxwell J.: On the dynamical evidence of the molecular constitution of bodies. Nature 11, 357–359 (1875)

    Article  ADS  Google Scholar 

  46. Mazière M., Besson J., Forest S., Tanguy B., Chalons H., Vogel F.: Numerical aspects in the finite element simulation of the Portevin–Le Chatelier effect. Comp. Method Appl. Mech. Eng. 199, 734–754 (2010)

    Article  ADS  MATH  Google Scholar 

  47. McCormick P.G.: Theory of flow localization due to dynamic strain ageing. Acta Metall. 36, 3061–3067 (1988)

    Article  Google Scholar 

  48. Mesarovic S.: Dynamic strain aging and plastic instabilities. J. Mech. Phys. Solids 43(5), 671–700 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Mindlin R., Eshel N.: On first strain gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  50. Mühlhaus H.B., Boland J.: A gradient plasticity model for Lüders band propagation. Pure Appl. Geophys. 137(4), 391–407 (1991)

    Article  ADS  Google Scholar 

  51. Peerlings R., Poh L., Geers M.: An implicit gradient plasticity-damage theory for predicting size effects in hardening and softening. Eng. Fract. Mech. 95, 2–12 (2012)

    Article  Google Scholar 

  52. Piobert, G.: Expérience sur la pénétration des projectiles dans le fer forgé. Mémoire de l’Artillerie, p. 505 (1842)

  53. Poh L., Peerlings R., Geers M., Swaddiwudhipong S.: An implicit tensorial gradient plasticity model—formulation and comparison with a scalar gradient model. Int. J. Solids Struct. 48, 2595–2604 (2011)

    Article  Google Scholar 

  54. Rice, J.: The localisation of plastic deformation. In: Koiter, W. (ed.) Proceedings of 14th International Conference Theoretical and Applied Mechanics. Delft, North–Holland, Amsterdam, pp. 207–220 (1976)

  55. Soler, M.: Etude du vieillissement d’un acier à bake hardening: évolution des propriétés mécaniques de traction—corrélation avec la microstructure. Ph.D. thesis, INSA Lyon (1998)

  56. Tsukahara H., Iung T.: Finite element simulation of the Piobert-lüders behavior in an uniaxial test. Mater. Sci. Eng. A 248, 304–308 (1998)

    Article  Google Scholar 

  57. Tsukahara H., Iung T.: Piobert–Lüders and Portevin–Le Chatelier instabilities. finite element modelling with abaqus. J. Phys. IV 9, 157–164 (1999)

    Google Scholar 

  58. Wang H.D., Berdin C., Mazière M., Forest S., Prioul C., Parrot A., Le-Delliou P.: Portevin–Le Chatelier (PLC) instabilities and slant fracture in C-Mn steel round tensile specimens. Scrypta Mater. 64, 430–433 (2011)

    Article  Google Scholar 

  59. Wenman M.R., Chard-Tuckey P.R.: Modelling and experimental characterisation of the Lüders strain in complex loaded ferritic steel compact tension specimens. Int. J. Plasticity 26, 1013–1028 (2010)

    Article  MATH  Google Scholar 

  60. Wulfinghoff S., Böhlke T.: Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc. R. Soc. A 468, 2682–2703 (2012)

    Article  ADS  Google Scholar 

  61. Zaiser M., Mill F., Konstantinidis A., Aifantis K.: Strain localization and strain propagation in collapsible solid foams. Mater. Sci. Eng. A 567, 38–45 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Forest.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazière, M., Forest, S. Strain gradient plasticity modeling and finite element simulation of Lüders band formation and propagation. Continuum Mech. Thermodyn. 27, 83–104 (2015). https://doi.org/10.1007/s00161-013-0331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-013-0331-8

Keywords

Navigation