Skip to main content
Log in

A gradient plasticity model for lüders band propagation

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

At the onset of plastic deformation some materials exhibit non-monotonic behaviour in that after initially yielding the flow stress decreases with continuing strain, passing through a minimum. Strain softening destabilizes homogeneous configurations and results in the formation of bands of localized deformation. Within these bands the macro and microscales of the deformation overlap and accordingly terms have to be included in the evolution equation for the plastic strain to provide the necessary information on the material's behaviour at the next smaller scale. In the model chosen here the evolution equation has the form of a reaction diffusion equation, whereby physically the diffusion term accounts for the nonlocal interaction between dislocations on neighbouring slip planes. The model predicts the band propagation velocity, the width of the propagation front and the strain profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, H., andHaasen, P. (1968),Dislocations and Plastic Flow in the Diamond Structure, Sol. State Phys.22, 27–158.

    Google Scholar 

  • Anand, K. H. K., Kim, K. H., andShawki, T. G. (1987).Onset of Shear Localization in Viscoplastic Solids, J. Mech. Phys. Sol.35, 407–429.

    Google Scholar 

  • Aronson, D. G. andWeinberger, H. F. (1978),Multilinear Nonlinear Diffusion Arising in Population Genetics, Adv. in Math.30, 33–76.

    Google Scholar 

  • Bammann, D. J., andAifantis, E. C. (1987),A Model for Finite Deformation Plasticity, Acta Mech.69 970–117.

    Google Scholar 

  • Brown, N. E., andLubens, K. F. (1961),Microstrain in Polycrystalline Metals, Acta Metall.9, 106–111.

    Google Scholar 

  • Coleman, B. D. (1983),Necking and Drawing in Polymeric Fibres under Tension, Arch. Rat. Mech. Analysis,83, 115–137.

    Google Scholar 

  • Cottrell, A. H.,Dislocations and Plastic Flow in Crystals (Oxford 1953) 223 pp.

  • Dee, G., andLanger, J. S. (1983),Propagating Pattern Selection, Phys. Rev. Lett.50, 383–386.

    Google Scholar 

  • Essmann, V., andMughrabi, H. (1979),Annihilation of Dislocations during Tensile and Cyclic Deformation and Limits of Dislocation Densities, Phil. Mag.A40, 731–756.

    Google Scholar 

  • Estrin, Y., andKubin, L. P. (1986).Local Strain Hardening and Non-uniformity of Plastic Deformation. Acta Metall.43, 2455–2464.

    Google Scholar 

  • Estrin, Y., andKubin, L. P.,Micro- and macroscopic aspects of unstable plastic flow. InPhase Transformations (eds. Aifantis, E. C. and Gittus, J.) (Elsevier, London, New York 1986) pp. 185–202.

    Google Scholar 

  • Friedel, J.,Dislocations (Pergamon, Oxford 1964) 491 pp.

    Google Scholar 

  • Gilman, J. J.,Micromechanics of Flow in Solids (McGraw-Hill, N.Y. 1969) 294 pp.

    Google Scholar 

  • Haasen, P.,Physical Metullurgy (Cambridge Univ. Press, Cambridge 1978) 381 pp.

    Google Scholar 

  • Hahn, G. T. (1962),A Model for Yielding with Special Reference to the Yield-point Phenomena of Iron and Related bcc Metals, Acta Metall.10, 727–737.

    Google Scholar 

  • Holt, D. J. (1970),Dislocation Cell Formation in Metals, J. Appl. Phys.41, 3197–3201.

    Google Scholar 

  • Holmes, P.,Nonlinear dynamics, chaos and mechanics. InProc. 11th US Nat. Cong. of Appl. Mech. (ed. Chen, C.F.) (Tucson, Arizona 1990) pp. 23–29.

  • Hutchinson, J. W. andNeale, K. W. (1983),Neck Propagation, J. Mech. Phys. Sol.31, 405–426.

    Google Scholar 

  • Johnston, W. G., andGilmann, J. J. (1959),Dislocation Velocities, Dislocation Densities and Plastic Flow in Lithium Fluoride Crystal, J. Appl. Phys.30, 129–144.

    Google Scholar 

  • Kirkaldy, J. S., andYoung, D. J.,Diffusion in the Solid State (Institute of Metals, London 1987) 527 pp.

    Google Scholar 

  • Knowles, J. K., andSternberg, E. (1977),On the Failure of Ellipticity of the Equations for Finite Elastostatics Plane Strain, Arch. Rat. Mech. Analysis63, 321–336.

    Google Scholar 

  • Kocks, U. F., Argon, A. S., andAshby, M. F. (1975),Thermodynamics and Kinetics of Slip, Prog. Materials Science19, 1–288.

    Google Scholar 

  • Kocks, U. F.,Lineal and areal glide. InThe Mechanics of Dislocations (eds. Aifantis, E. C., and Hirth, J. P.) (ASM, Ohio 1985) pp. 81–83.

    Google Scholar 

  • Kocks, U. F.,Constitutive behaviour based on crystal plasticity. InUnified Constitutive Equations for Creep and Plasticity (ed. Miller, A. K.) (Elsevier, London 1987) pp. 1–88.

    Google Scholar 

  • Kolmogoroff, A., Petrovsky, I., andPiscounoff, N. (1937).Etude de l'equation de la diffusion avec croissance de la quantite de materie et son application a un problem biologique, Bull. Univ. Moscow, Ser. Internet., Sec.A1, 1–25.

    Google Scholar 

  • Kratochvil, J. (1988),Dislocation Pattern Formation in Metals, Revue Phys. Appl.23, 419–429.

    Google Scholar 

  • Kubin, L. P., andEstrin, Y. (1988),Strain Non-uniformities and Plastic Instabilities, Revue Phys. Appl.23, 573–583.

    Google Scholar 

  • Kubin, L. P., andLépinoux, J.,The dynamic organization of dislocation structures. InStrength of Metals and Alloys, Proc. 8th Int. Conf. on the Strength of Metals and Alloys, Vol. 1 (Tampere, Finland 1988) pp. 35–59.

    Google Scholar 

  • Kutter, K. andAifantis, E. C. (1990),Existence, Uniqueness and Long-time Behaviour of Materials with Non-monotone Equations of State and Higher Order Gradients, Quart. Appl. Math.48, 473–489.

    Google Scholar 

  • McLean, D.,Mechanical Properties of Metals (Wiley 1962) 403 pp.

  • Morrison-Smith, D. J., Paterson, M. S., andHobbs, B. E. (1976),An Electron Microscope Study of Plastic Deformation in Single Crystals of Synthetic Quartz, Tectonophys.33, 43–79.

    Google Scholar 

  • Mühlhaus, H-B., andAifantis, E. (1991),A Variational Principle for Gradient Publicity. Int. J. Sol. and Struct.28, 845–857.

    Google Scholar 

  • Murray, J. D.,Lectures on Nonlinear-differential-equation Models in Biology (Clarendon Press, Oxford 1977).

    Google Scholar 

  • Neuhäuser, H.,Slip propagation and fine structure. InNon-Linear Phenomena in Materials Science (eds. Kubin, H., and Martin, G.) (TransTech., Switzerland 1988) pp. 407–416.

    Google Scholar 

  • Orowan, E. (1940),Problems of Plastic Gliding, Proc. Phys. Soc. (London)52, 8–22.

    Google Scholar 

  • Rice, J. R.,The localization of plastic deformation. InTheoretical and Applied Mechanics (ed. Koiter, W. T.) (Proc. 14th IUTAM Conf., Delft 1976) pp. 207–220.

  • Shewmon, P. G.,Transformations in Metals (McGraw-Hill, N.Y. 1969) 394 pp.

    Google Scholar 

  • Vardoulakis, I. (1980),Shear Band Inclination and Shear Modulus of Sand in Biaxial Tests, Int. J. Num. Anal. Meth. Geomech.4, 103–119.

    Google Scholar 

  • Walgraef, D., andAifantis, E. C. (1985),On the Formation and Stability of Dislocation Patterns. I–III, Int. J. Engng Sci.23, 1351–1364.

    Google Scholar 

  • Walgraef, D.,Instabilities and patterns in reaction-diffusion dynamics. InProc. Int. CNRS Meeting on Nonlinear Phenomena in Mat. Sci. (Aussois, France. TransTech. Publ. 1988) pp. 77–96.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlhaus, H.B., Boland, J. A gradient plasticity model for lüders band propagation. PAGEOPH 137, 391–407 (1991). https://doi.org/10.1007/BF00879041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879041

Key words

Navigation