Skip to main content
Log in

On strain-rate sensitivity and size effect of brittle solids: transition from cooperative phenomena to microcrack nucleation

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

An idealized brittle microscale system is subjected to dynamic uniaxial tension in the medium-to-high strain-rate range \((\dot \varepsilon \in \;[100\;s^{-1},\;1 \times 10^{7} \;s^{-1}])\) to investigate its mechanical response under constrained spatial and temporal scales. The setup of dynamic simulations is designed to ensure practically identical in-plane stress conditions on a system of continuum particles forming a two-dimensional, geometrically and structurally disordered, lattice. The rate sensitivity of size effects is observed as well as the ordering effect of kinetic energy. A simple phenomenological expression is developed to account for the tensile strength sensitivity of the small-sized brittle systems to the strain-rate and extrinsic size effects, which may serve as a guideline for formulation of constitutive relations in the MEMS design. The representative sample is defined as a square lattice size for which the tensile strength becomes rate-insensitive and an expression is proposed to model its evolution between two asymptotes corresponding to the limiting loading rates. The dynamics of damage accumulation is analyzed as a function of sample size and loading rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uchic M.D., Dimiduk D.M., Florando J.N., Nix W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004)

    Article  ADS  Google Scholar 

  2. Greer J.R., Oliver W.C., Nix W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005)

    Article  Google Scholar 

  3. Bei H., Shim S., Pharr G.M., George E.P.: Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762–4770 (2008)

    Article  Google Scholar 

  4. Ng K.S., Ngan A.H.W.: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712–1720 (2008)

    Article  Google Scholar 

  5. Rinaldi, A., Peralta, P., Friesen, C., Nahar, D., Licoccia, S., Traversa, E., Sieradzki, K.: Superhard nanobuttons: constraining crystal plasticity and dealing with extrinsic effects at the nanoscale. Small (2009)

  6. Kiener D., Grosinger W., Dehm G., Pippan R.: A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580–592 (2008)

    Article  Google Scholar 

  7. Kim J.-Y., Jang D., Greer J.R.: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355–2363 (2010)

    Article  Google Scholar 

  8. Dehm G.: Miniaturized single-crystalline fcc metals deformed in tension: new insights in size-dependent plasticity. Progr. Mater. Sci 54, 664–688 (2009)

    Article  Google Scholar 

  9. Greer J.R., De Hosson J.Th.M.: . Progr. Mater. Sci 56, 654–724 (2011)

    Article  Google Scholar 

  10. Tang H., Schwarz K.W., Espinosa H.D.: Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression. Acta Mater. 55, 1607–1616 (2007)

    Article  Google Scholar 

  11. Rinaldi A.: Effects of dislocation density and sample-size on plastic yielding at the nanoscale: a Weibull-like framework. Nanoscale 3(11), 4817–4823 (2011)

    Article  ADS  Google Scholar 

  12. Rinaldi, A, Peralta, P., Sieradzki, K., Traversa, E., Liccoccia, S.: Role of dislocation density on the sample-size effect in nanoscale plastic yielding. J. Nanomech. Micromech., doi:10.1061/(ASCE)NM.2153-5477.0000047

  13. Uchic M.D., Shade P.A., Dimiduk D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res 39(1), 361–386 (2009)

    Article  ADS  Google Scholar 

  14. Kraft O., Gruber P.A., Monig R., Weygand D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res 40, 293–317 (2010)

    Article  ADS  Google Scholar 

  15. Bourne N.K.: Materials’ physics in extremes: akrology. Metall. Mater. Trans. A 42, 2975–2984 (2011)

    Article  Google Scholar 

  16. Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam (1999)

    Google Scholar 

  17. Hill R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  ADS  MATH  Google Scholar 

  18. Krajcinovic D.: Damage Mechanics. North-Holland, Amsterdam (1996)

    Google Scholar 

  19. Delaplace A., Pijaudier-Cabot G., Roux S.: Progressive damage in discrete models and consequences on continuum modeling. J. Mech. Phys. Solids 44(1), 99–136 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Krajcinovic D., Rinaldi A.: Thermodynamics and statistical physics of damage processes in quasi-ductile solids. Mech. Mater. 37, 299–315 (2005)

    Article  Google Scholar 

  21. Van Vliet M.R.A.: Size Effect in Tensile Fracture of Concrete and Rock. Delft University Press, Delft (2000)

    Google Scholar 

  22. Field J.E., Walley S.M., Proud W.G, Goldrein H.T., Siviour C.R.: Review of experimental techniques for high rate deformation and shock studies. Int. J. Impact Eng. 30(7), 725–775 (2004)

    Article  Google Scholar 

  23. Forest S., Barbe F., Cailletaud G.: Cosserat modeling of size effects in the mechanical behavior of polycrystals and multi-phase materials. Int. J. Solids Struct. 37, 7105–7126 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Alibert J.J., Seppecher P., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mastilovic S., Krajcinovic D.: Statistical models of brittle deformation, part two: computer simulations. Int. J. Plast. 15, 427–456 (1999)

    Article  Google Scholar 

  26. Mastilovic S., Rinaldi A., Krajcinovic D.: Ordering effect of kinetic energy on dynamic deformation of brittle solids. Mech. Mater. 40, 407–417 (2008)

    Article  Google Scholar 

  27. Mastilovic S.: Some observations regarding stochasticity of dynamic response of 2D disordered brittle lattices. Int. J. Damage Mech. 20, 267–277 (2011)

    Article  Google Scholar 

  28. Curtin W.A., Scher H.: Brittle fracture in disordered materials: a spring network model. J. Mater. Res. 5(3), 535–553 (1990)

    Article  ADS  Google Scholar 

  29. Lawn B.: Fracture of Brittle Solids, Second ed. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  30. Mastilovic S.: A note on short-time response of two-dimensional lattices during dynamic loading. Int. J. Damage Mech. 17, 357–361 (2008)

    Article  Google Scholar 

  31. Rinaldi A., Krajcinovic D., Peralta P., Lai Q.: Lattice models of polycrystalline microstructures: a quantitative approach. Mech. Mater. 40, 17–36 (2008)

    Article  Google Scholar 

  32. Monette L., Anderson M.P.: Elastic and fracture properties of the two-dimensional triangular and square lattices. Model. Simul. Mater. Sci. Eng. 2, 53–66 (1994)

    Article  ADS  Google Scholar 

  33. Jagota, A., Bennison, S.J.: Spring-Network and Finite Element Models for Elasticity and Fracture. In: Proceedings of a workshop on Breakdown and non-linearity in soft condensed matter. Bardhan, K.K., Chakrabarti, B.K., Hansen, A. (eds.). Springer-Verlag Lecture Notes in Physics (Berlin, Heidelberg, New York) ISBN 3-540-58652-0(1994)

  34. Ostoja-Starzewski M.: Lattice models in micromechanics. Appl. Mech. Rev 55(1), 35–60 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  35. Hentz S., Donz F.V., Daudeville L.: Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Comput. Struct. 82, 2509–2524 (2004)

    Article  Google Scholar 

  36. Riera J.D., Miguel L.F.F., Iturrioz I.: Strength of brittle materials under high strain rates in DEM simulations. Comput. Model. Eng. Sci. 82(2), 113–136 (2011)

    Google Scholar 

  37. Rinaldi A., Lai Y.-C.: Statistical damage theory of 2D lattices: energetics and physical foundations of damage parameter. Int. J. Plast. 23, 1796–1825 (2007)

    Article  MATH  Google Scholar 

  38. Mastilovic S.: Further remarks on stochastic damage evolution of brittle solids under dynamic tensile loading. Int. J. Damage Mech. 20, 900–921 (2011)

    Article  Google Scholar 

  39. Bažant Z.P., Planas J.: Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press, Boca Raton (1998)

    Google Scholar 

  40. Breysse, D., Renaudin, P.: On the influence of local disorder on size-effect. In: Carpinteri, A. (ed.), Size-Scale Effects in the Failure Mechanisms of Materials and Structures, E & FN Spon, London, (1996) pp. 187–199

  41. Carpinteri, A., Chiaia, B., Ferro, G.: Multifractal nature of material microstructure and size effects on nominal tensile strength. In:Baker,A., Karihaloo, B.L. (eds.). Fracture ofBrittle Disordered Materials–Concrete,Rock and Ceramics, pp. 21– 34. E & FN Spon, London (1995)

  42. Jennings A.T., Li J., Greer J.R.: Emergence of strain-rate sensitivity in Cu nanopillars: transition from dislocation multiplication to dislocation nucleation. Acta Mater. 59, 5627–5637 (2011)

    Article  Google Scholar 

  43. Castillo E.: Extreme Value Theory in Engineering. Academic Press, Boston (1987)

    Google Scholar 

  44. Qi C., Wang M., Qian Q.: Strain rate effects on the strength and fragmentation size of rocks. Int. J. Impact Eng. 36, 1355–1364 (2009)

    Article  Google Scholar 

  45. Cotsovos D.M., Pavlović M.N.: Numerical investigation of concrete subjected to high rates of uniaxial tensile loading, Int. J. Impact Eng. 35, 319–335 (2008)

    Article  Google Scholar 

  46. Morquio A., Riera J.D.: Size and strain rate effects in steel structures. Eng. Struct. 26, 669–679 (2004)

    Article  Google Scholar 

  47. Curtin W.A., Scher H.: Algebraic scaling of material strength. Phys. Rev. B 45(6), 2620–2627 (1992)

    Article  ADS  Google Scholar 

  48. Del Piero G., Truskinovsky L.: Macro- and micro-cracking in one-dimensional elasticity. Int. J. Solids Struct. 38, 1135–1148 (2001)

    Article  MATH  Google Scholar 

  49. Mishnaevsky L. Jr: Damage and Fracture in Heterogeneous Materials. A. A. Balkema, Rotterdam (1998)

  50. Rinaldi A., Krajcnovic D., Mastilovic S.: Statistical damage mechanics–constitutive relations. J. Theor. Appl. Mech. 44(3), 585–602 (2006)

    Google Scholar 

  51. Hansen A., Roux S., Herrmann H.J: Rupture of central-force lattices. J. Phys. France 50, 733–744 (1989)

    Article  Google Scholar 

  52. Herrmann H.J., Hansen A., Roux S.: Fracture of disordered, elastic lattices in two dimensions. Phys. Rev. B 39(1), 637–647 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreten Mastilovic.

Additional information

Communicated by Francesco dell'Isola and Samuel Forest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastilovic, S. On strain-rate sensitivity and size effect of brittle solids: transition from cooperative phenomena to microcrack nucleation. Continuum Mech. Thermodyn. 25, 489–501 (2013). https://doi.org/10.1007/s00161-012-0279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0279-0

Keywords

Navigation