Skip to main content
Log in

Bulk equations and Knudsen layers for the regularized 13 moment equations

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The order of magnitude method offers an alternative to the Chapman-Enskog and Grad methods to derive macroscopic transport equations for rarefied gas flows. This method yields the regularized 13 moment equations (R13) and a generalization of Grad’s 13 moment equations for non-Maxwellian molecules. Both sets of equations are presented and discussed. Solutions of these systems of equations are considered for steady state Couette flow. The order of magnitude method is used to further reduce the generalized Grad equations to the non-linear bulk equations, which are of second order in the Knudsen number. Knudsen layers result from the linearized R13 equations, which are of the third order. Superpositions of bulk solutions and Knudsen layers show good agreement with DSMC calculations for Knudsen numbers up to 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bobylev A.V. (1982). The Chapman–Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 27: 29–31

    Google Scholar 

  2. Bobylev, A.V.: Instabilities in the Chapman–Enskog expansion and hyperbolic Burnett equations. J. Stat. Phys., published online 1.1.2006 (2006)

  3. Cercignani C. (1975). Theory and application of the Boltzmann equation. Scottish Academic Press, Edinburgh

    MATH  Google Scholar 

  4. Chapman S. and Cowling T.G. (1970). The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge

    Google Scholar 

  5. Jin S. and Slemrod M. (2001). Regularization of the Burnett equations via relaxation. J. Stat. Phys. 103: 1009–1033

    Article  MATH  MathSciNet  Google Scholar 

  6. Grad H. (1949). On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2: 325

    Article  MathSciNet  Google Scholar 

  7. Koga T. (1954). A proposal for fundamental equations of dynamics of gases under high stress. J. Chem. Phys. 22: 1633–1646

    Article  Google Scholar 

  8. Kogan M.N. (1969). Rarefied gas dynamics. Plenum Press, New York

    Google Scholar 

  9. Mackowski D.W., Papadopoulos D.H. and Rosner D.E. (1999). Comparison of Burnett and DSMC predictions of pressure distributions and normal stress in one-dimensional, strongly nonisothermal gas. Phys. Fluids 11: 2108–2116

    Article  Google Scholar 

  10. Marques Jr.W. and Kremer G.M. (2001). Couette flow from a thirteen field theory with jump and slip boundary conditions. Continuum Mech. Thermodyn. 13: 207–217

    MATH  MathSciNet  Google Scholar 

  11. Müller I., Reitebuch D. and Weiss W. (2003). Extended thermodynamics—consistent in order of magnitude. Cont. Mech. Thermodyn. 15: 113–146

    Article  MATH  Google Scholar 

  12. Reinecke S. and Kremer G.M. (1996). Burnett’s equations from a (13+9N)-field theory. Cont Mech. Thermodyn. 8: 121–130

    MATH  MathSciNet  Google Scholar 

  13. Rosenau P. (1989). Extending hydrodynamics via the regularization of the Chapman–Enskog solution. Phys. Rev. A 40: 7193–7196

    Article  MathSciNet  Google Scholar 

  14. Struchtrup H. and Weiss W. (2000). Temperature jumps and velocity slip in the moment method. Cont. Mech. Thermodyn. 12: 1–18

    Article  MATH  MathSciNet  Google Scholar 

  15. Struchtrup H. and Torrilhon M. (2003). Regularization of Grad’s 13-moment-equations: derivation and linear analysis. Phys. Fluids 15: 2668–2680

    Article  MathSciNet  Google Scholar 

  16. Struchtrup H. (2004). Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16: 3921–3934

    Article  MathSciNet  Google Scholar 

  17. Struchtrup H. (2004). Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. Multiscale Model. Simul. 3: 211–243

    MathSciNet  Google Scholar 

  18. Struchtrup H. (2005). Macroscopic transport equations for rarefied gas flows—approximation methods in kinetic theory. Interaction of Mechanics and Mathematics Series. Springer, Heidelberg

    Google Scholar 

  19. Struchtrup H. (2005). Failures of the Burnett and Super-Burnett equations in steady state processes. Cont. Mech. Thermodyn. 17: 43–50

    Article  MATH  MathSciNet  Google Scholar 

  20. Struchtrup, H.: Scaling and expansion of moment equations in kinetic theory. J. Stat. Phys. (2006, in press)

  21. Thatcher, T.: M.A.Sc. Thesis, University of Victoria (2005)

  22. Torrilhon M. and Struchtrup H. (2004). Regularized 13-moment-equations: shock structure calculations and comparison to Burnett models. J. Fluid Mech. 513: 171–198

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhong X., MacCormack R.W and Chapman D.R. (1993). Stabilization of the Burnett equations and applications to hypersonic flows. AIAA J. 31: 1036

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Struchtrup.

Additional information

Communicated by M. Slemrod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struchtrup, H., Thatcher, T. Bulk equations and Knudsen layers for the regularized 13 moment equations. Continuum Mech. Thermodyn. 19, 177–189 (2007). https://doi.org/10.1007/s00161-007-0050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-007-0050-0

Keywords

PACS

Navigation