Skip to main content
Log in

A void-based description of compaction and segregation in flowing granular materials

  • Original article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract.

Guided by the kinematical treatment of vacancies in theories for solid-state diffusion, we develop a theory for compaction and segregation in flowing granular materials. This theory leads to a partial differential equation for the macroscopic motion of the material coupled to a system of partial differential equations for the volume fractions of the individual particle types. When segregation is ignored, so that the focus is compaction, the latter system is replaced by a scalar partial differential equation that closely resembles equations arising in theories of traffic flow. To illustrate the manner in which the theory describes compaction and segregation, we present three explicit solutions. In particular, for an arbitrary loosely packed mixture of small and large particles in a fixed container under the influence of gravity, we show that a layer of large particles forms at the free surface and grows with time, while a closely packed mixture of large and small particles forms and grows from the base of the container; the final solution, attained in a finite time, consists of a layer of closely packed large particles above a closely packed mixed state. At the level of everyday experience, this solution at least qualitatively explains why in a container of mixed nuts, Brazil nuts are generally found at the top.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donald, M.B., Roseman, B.: Mechanisms in a horizontal drum mixer. Br. Chem. Eng. 7, 749-753 (1962)

    Google Scholar 

  2. Campbell, H., Bauer, W.C.: Cause and cure of demixing in solid-solid mixers. Chem. Eng. 73, 179-184 (1966)

    Google Scholar 

  3. Hill, K.M., Kakalios, J.: Reversible axial segregation of binary mixtures of granular materials. Phys. Rev. E 49, R3610-R3613 (1994)

    Google Scholar 

  4. Brown, R.L.: The fundamental principles of segregation. J. Inst. Fuel 13, 15-19 (1939)

    MATH  Google Scholar 

  5. Williams, J.C.: Segregation of powders and granular materials. Fuel Soc. J. 14, 29-34 (1963)

    MATH  Google Scholar 

  6. Williams, J.C.: The segregation of particulate materials. A review. Powder Technol. 15, 245-251 (1976)

    Article  Google Scholar 

  7. Bridgewater, J.: Fundamental powder mixing mechanisms. Powder Technol. 15, 215-236 (1976)

    Article  Google Scholar 

  8. Harwood, C.F.: Powder segregation due to vibration. Powder Technol. 16, 51-57 (1977)

    Article  Google Scholar 

  9. Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55-91 (2000)

    Article  MATH  Google Scholar 

  10. Haff, P.K., Werner, B.T.: Computer simulation of the mechanical sorting of grains. Powder Technol. 48, 239-245 (1986)

    Article  Google Scholar 

  11. Ohtsuki, T., Takemoto, Y., Hata, T., Kawai, S., Hayashi, A.: Molecular dynamics study of cohesionless granular materials: Size segregation by shaking. Int. J. Mod. Phys. B 7, 1865-1872 (1993)

    Google Scholar 

  12. Baumann, G., Jánosi, I.M., Wolf, D.E.: Particle trajectories and segregation in a two-dimensional rotating drum. Europhys. Lett. 27, 203-208 (1994)

    Google Scholar 

  13. Ristow, G.H.: Particle mass segregation in a two-dimensional rotating drum. Europhys. Lett. 28, 97-101 (1994)

    Google Scholar 

  14. Dury, C.M., Ristow, G.H.: Radial segregation in a two-dimensional rotating drum. J. Phys. I 7, 737-745 (1997)

    Article  MathSciNet  Google Scholar 

  15. Hong, Paul V. Quinn, P.V., Luding, S.: Reverse Brazil nut problem: Competition between percolation and condensation. Phys. Rev. Lett. 86, 3423-3426 (2001)

    Article  Google Scholar 

  16. Savage, S.B.: Mechanics of rapid granular flows. Adv. Appl. Mech. 24, 289-366 (1984)

    MATH  Google Scholar 

  17. Hutter, K., Rajagopal, K.R.: On flows of granular materials. Continuum Mech. Thermodyn. 6, 81-139 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Wang, Y., Hutter, K.: Granular material theories revisited. In: Balmforth, N.J., Provenzale, A. (eds) Hot, Cold and Dirty Fluids: Selected Topics in Geological and Geomorphological Fluid Mechanics, Springer, Berlin Heidelberg New York (2001)

  19. Jenkins, J.T., Mancini, F.: Kinetic theory for mixtures of smooth, nearly elastic spheres. Phys. Fluids A 1, 2050-2057 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Arnarson, B.Ö., Willits, J.T.: Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids 10, 1324-1328 (1998)

    Article  Google Scholar 

  21. Jenkins, J.T.: Particle segregation in collisional flows of inelastic spheres. In: Hermann, H.J., Hovig, J.-P., Ludig, S. (eds) Physics of Dry Granular Media, Kluwer, Dordrecht, Boston, London (1998) pp. 645-658

  22. Arnarson, B.Ö., Jenkins, J.T.: Particle segregation in the context of species momentum balances. In: Helbing, D., Hermann, H.J., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow ‘99, Springer, Berlin Heidelberg New York (2000) pp. 481-487

  23. Aranson, I.S., Tsimring, L.S., Vinokur, V.M.: Continuum theory of axial segregation in a long rotating drum. Phys. Rev. E 60, 1975-1987 (1999)

    Article  Google Scholar 

  24. Khakhar, D.V., McCarthy, J.J., Ottino, J.M.: Mixing and segregation of granular materials in chute flows. Chaos 9, 594-610 (1999)

    Article  MATH  Google Scholar 

  25. Rosato, A., Prinz, F., Standburg, K.J., Svendsen, A.: Monte-Carlo simulation of particulate matter segregation. Powder Technol. 49, 59-69 (1986)

    Article  Google Scholar 

  26. Rosato, A., Prinz, F., Standburg, K.J., Svendsen, A.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038-1040 (1987)

    Article  MathSciNet  Google Scholar 

  27. Savage, S.B., Lun, C.K.K.: Particle size segregation in inclined chute flow of cohesionless granular solids. J. Fluid Mech. 189, 311-335 (1988)

    Google Scholar 

  28. Fitt, A.D., Wilmott, P.: Cellular-automaton model for segregation of a two-species granular flow. Phys. Rev. A 45, 2383-2388 (1992)

    Article  Google Scholar 

  29. Ågren, J.: Diffusion in phases with several components and sublattices. J. Phys. Chem. Solids 43, 421-430 (1982)

    Article  Google Scholar 

  30. Cahn, J.W., Larché, F.C.: An invariant formulation of multicomponent diffusion in crystals. Scripta Metall. 17, 927-932 (1983)

    Article  Google Scholar 

  31. Larché, F.C., Cahn, J.W.: The interactions of composition and stress in crystalline solids. Acta Metall. 33, 331-357 (1983)

    Article  Google Scholar 

  32. Mullins, W.W., Sekerka, R.F.: On the thermodynamics of crystalline solids. J. Chem. Phys. 82, 5192-5202 (1985)

    Article  MathSciNet  Google Scholar 

  33. Fried, E., Gurtin, M.E.: Coherent solid-state phase transitions with atomic diffusion: a thermomechanical treatment. J. Stat. Phys. 95, 1361-1427 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Litwiniszyn, J.: A model of a random walk of particles adapted to researches on problems of mechanics of loose media. Bull. Acad. Pol. Sci. (Ser. Sci. Tech.) 11, 61-70 (1963)

    Google Scholar 

  35. Mullins, W.W.: Stochastic theory of particle flow under gravity. J. Appl. Phys. 43, 665-678 (1972)

    Google Scholar 

  36. Caram, H.S., Hong, D.C.: Diffusing void model for granular flow. Mod. Phys. Lett. B 6, 761-771 (1992)

    Google Scholar 

  37. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, Oxford University Press Oxford (1993)

  38. Ericksen, J.L.: Liquid crystals with variable degree of orientation. Arch. Rational Mech. Anal. 113, 97-120 (1991)

    MATH  Google Scholar 

  39. Kirchner, N.P.: Thermodynamically consistent modelling of absrasive granular materials. Part I: Non-equilibrium theory, Proc. R. Soc. London, Ser. A (2002) (to appear)

  40. Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London, Ser. A 225, 49-63 (1954)

    Google Scholar 

  41. Shahinpoor, M., Lin, S.P.: Rapid Couette flow of cohesionless granular materials. Acta Mech. 42, 183-196 (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fried.

Additional information

Communicated by H. Ehrentraut

Received: 7 January 2003, Accepted: 13 September 2003

PACS:

45.70.-n, 47.50. + d, 77.54. + r, 83.10.-y, 83.10.Bb, 83.10.Ff, 83.10.Gr, 89.75.-k

Correspondence to: E. Fried

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fried, E., Gurtin, M.E. & Hutter, K. A void-based description of compaction and segregation in flowing granular materials. Continuum Mech. Thermodyn. 16, 199–219 (2004). https://doi.org/10.1007/s00161-003-0159-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-003-0159-8

Keywords:

Navigation