Skip to main content
Log in

Spectroradiometry with space telescopes

  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

Radiometry, i.e. measuring the power of electromagnetic radiation—hitherto often referred to as “photometry”—is of fundamental importance in astronomy. We provide an overview of how to achieve a valid laboratory calibration of space telescopes and discuss ways to reliably extend this calibration to the spectroscopic telescope’s performance in space. A lot of effort has been, and still is going into radiometric “calibration” of telescopes once they are in space; these methods use celestial primary and transfer standards and are based in part on stellar models. The history of the calibration of the Hubble Space Telescope serves as a platform to review these methods. However, we insist that a true calibration of spectroscopic space telescopes must directly be based on and traceable to laboratory standards, and thus be independent of the observations. This has recently become a well-supported aim, following the discovery of the acceleration of the cosmic expansion by use of type-Ia supernovae, and has led to plans for launching calibration rockets for the visible and infrared spectral range. This is timely, too, because an adequate exploitation of data from present space missions, such as Gaia, and from many current astronomical projects like Euclid and WFIRST demands higher radiometric accuracy than is generally available today. A survey of the calibration of instruments observing from the X-ray to the infrared spectral domains that include instrument- or mission-specific estimates of radiometric accuracies rounds off this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. In astronomy, the term photometry is often used when dealing with broadband light-level measurements; those with higher spectral resolution are called spectrophotometry. However, in general terminology of radiation measurements, photometry refers to intensity determinations that are relevant to human vision. Therefore, we have chosen to use the terms radiometry or spectroradiometry, which apply to measurements in the entire electromagnetic spectrum, in this paper. To avoid confusion, we use the term “(astronomical) photometry” when discussing results of the photometry method of astronomy.

  2. If an object is not spatially resolved, irradiance, I, the detected power per unit area (with unit symbol W m\(^{-2}\); often, loosely, called radiative flux) is measured. Spectral irradiance refers to the irradiance per energy (or wavelength) interval at a given energy (or wavelength). Radiance, R, is the power per unit area per unit solid angle, with unit symbol W m\(^{-2}\) sr\(^{-1}\) [cf., The International System of Units (SI), Brochure, 8th edition (2006, updated in 2014), Bureau International des Poids et Mesures (BIPM) http://www.bipm.org/en/publications/si-brochure]. Spectral radiance refers to the radiance per energy (or wavelength) interval at a given energy (or wavelength), with unit symbol W \(\hbox {m}^{-2}\hbox { sr}^{-1}\hbox { eV}^{-1}\) (or W \(\hbox {m}^{-2} \hbox { sr}^{-1}\hbox { nm}^{-1}\)). If the distance, d, to a uniformly emitting object of area, S, is known, then the irradiance is related to the radiance by \(I = R (S/d^{2})\).

  3. The effective area of a spectroradiometric instrument is the collecting area of an instrument with loss-free optical elements, i.e. with perfect reflections, diffraction or dispersion efficiency as well as detector efficiency.

  4. We leave out the gamma-ray and radio regimes which have their own, markedly different calibration methods (see, e.g. Kanbach et al. 2013; Schönfelder and Kanbach 2013).

  5. These should not be confused with the primary laboratory standards described in Sect. 2.1.

  6. Gaia was launched on 19 December 2013 and began its 5-year science phase on 29 July 2014. For its progress follow http://sci.esa.int/gaia.

  7. In spite of grazing-incidence optics being much less sensitive to contamination and, therefore, having a better radiometric stability, normal-incidence instrumentation is usually preferred—at least as long as surfaces with sufficient reflectivity are available, because the optical design of normal-incidence optics is considerably less difficult.

  8. By adding airglow and auroral-emission monitoring, the impact of space weather on the terrestrial thermosphere/ionosphere can be studied as well, and used to investigate real-time space weather effects. This in turn helps to derive detailed correction procedures for the evaluation of global navigation satellite system signals.

  9. A brief summary of Sect. 2 has been given earlier by Huber et al. (2013).

  10. Unless otherwise indicated, all uncertainties in this paper are given in terms of one standard deviation, i.e. 68 % confidence limit (coverage factor \(k=1\)).

  11. The Bureau International des Poids et Mesures (BIPM, http://www.bipm.fr) has the mandate to provide the basis for a single, coherent system of measurements—traceable to the International System of Units (SI)—throughout the world. The Bureau was set up by the Convention of the Metre and operates under the exclusive supervision of the Comité International des Poids et Mesures (CIPM). The Committee’s principal task is to ensure worldwide uniformity in units of measurement, particularly between national measurement standards, but the CIPM also takes on the more fundamental task to arrange for and monitor comparisons that determine the accuracies with which the individual primary standards are realised.

  12. http://www.ptb.de/mls/index.html.

  13. http://www.nist.gov/pml/div685/grp07/surffacility.cfm.

  14. The US National Institute of Science and Technology (earlier National Bureau of Standards, NBS).

  15. An additional concept, viz., having emission transfer standards on the International Space Station (ISS), or on a small calibration satellite orbiting the Earth, with the purpose of calibrating co-orbiting satellites in the extreme-ultraviolet range has been suggested (Smith et al. 1991).

  16. In contrast to the cryogenic electrical substitution radiometers, where corrections covering non-ideal performance nearly vanish owing to the low operating temperature, ESRs used at higher temperatures require a careful evaluation of outside influences, such as heating of baffles. Besides, for ESRs to be used in space, such tests are complex.

  17. Spectroradiometric calibrations—at the time called determining the “spectral energy distribution” (SED) of stars—had been performed starting in the 1910s with visual and photographic comparisons with assumed stellar models. Direct comparisons with calibrated standard lamps started at the end of the 1930s at Ann Arbor and continued in the 1940s with extensions to the infrared, and by going to higher altitude, for example at Jungfraujoch, into the ultraviolet as well. The results were usually expressed as colour temperatures and in magnitudes (see, for example, Code 1960).

  18. The Oxford group had been working on precision laboratory astrophysics early on. In the 1970s, they experimentally determined transition probabilities with one-percent accuracies, when such measurements normally had uncertainties of \(\pm 10~\%\) or more. Not surprisingly then, Blackwell chose the topic of “Uncertainty in Astronomy” for his Presidential Address to the Royal Astronomical Society (Blackwell 1975).

  19. In reviewing the literature relating to a potential variability of Vega, Bohlin (2014) came to the conclusion that there was not enough support for this claim. Nevertheless, Butkovskaya et al. (2011) and Butkovskaya (2014) did not exclude a long-term variability of Vega. The conclusion was that a (very minor) 21-year variability is “most probable”. Böhm et al. (2015) have recently observed starspots on Vega.

  20. “Spectroradiometrically” in our terminology.

  21. As pointed out before, Vega has now been replaced by the primary standard stars 109 Vir in the visible and by Sirius (\(\alpha \) CMa) in the infrared, cf., Engelke et al. (2010).

  22. Cf., http://hubblesite.org/the_telescope/team_hubble/servicing_missions.php#sm4, as well as the caption of Fig. 9. Note, however, that HST was not the first scientific satellite to be repaired in orbit. At launch in 1973, the Skylab space station had lost a so-called micrometeorid shield during launch. This shield would also have been a thermal shield of the astronauts’ living space. Upon their arrival at Skylab, the first crew was able to mount and deploy a heat shade, which saved the mission. In 1984, the Solar Maximum Mission also underwent repair in orbit, when it was visited by the space shuttle Challenger. Another example of a data gap stems from the SOHO mission, which experienced an intermediate time-out as well. Contact with the spacecraft was lost in August 1998 after a sequence of incorrect commands during what should have been a routine manoeuvre. Four weeks later, a powerful radar signal from Earth produced a faint echo from the spacecraft indicating that SOHO had not drifted away from its position in its L1-halo orbit after loss of contact. It was slowly rotating and angled in such a way that sunlight was going to fall on its solar cells during the following months. Normal operations could then be resumed after an extended turn-on and test period. The responsivity of many instruments had changed—out-baking in the absence of thermal control had, in fact, improved the responsivity of some instruments (cf., Pauluhn et al. 2002). In this context, we recall the earlier mentioned reference about the outgassing of a spacecraft after launch (Schläppi et al. 2010).

  23. The US National Bureau of Standards, now called National Institute of Standards and Technology (NIST).

  24. The idea that “if we accept that theoretical predictions should be correct ...” was later followed, and has been guiding the calibration of IUE and HST up to today. Improvements of the models (improved gravity values, non-LTE calculations, for example) which have taken place in the mean time will be mentioned below.

  25. This recommendation, with an extension into the infrared, was made in view of the STIS, which covered the wavelength range 115 nm to \(1\,\upmu \hbox {m}\) and was eventually installed on board HST during SM 2 in 1997. The data for the longer wavelengths were based on observations by Oke (1990) with the 5.1 m Hale telescope on Palomar Mountain that were later slightly corrected by use of HST FOS observations (Colina and Bohlin 1994).

  26. Note that the Astrophysics Data System ADS gives access to all papers in a series, whenever one calls up one of the individual papers.

  27. Cf., http://kurucz.harvard.edu/stars/.

  28. Updated general information on IACHEC is available on the web site http://web.mit.edu/iachec/. Results of the IACHEC collaboration are published as refereed papers and made accessible through http://web.mit.edu/iachec/papers/.

  29. http://heasarc.gsfc.nasa.gov/.

  30. http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html and http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_xcal.html.

  31. http://www.cosmos.esa.int/web/exosat/home.

  32. http://www.mpe.mpg.de/heg/panter.

  33. http://www.mpe.mpg.de/xray/wave/rosat/doc/calibration/index.php.

  34. http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_docs_rosat.html.

  35. http://www.mpe.mpg.de/xray/wave/rosat/doc/ruh/rosathandbook.php.

  36. Additionally, it carried a Gamma-Ray Burst Monitor (GRBM) of four CsI(Na) scintillators that were also used as active lateral shields of the PDS experiment. Its calibration is described by Amati et al. (1997).

  37. http://www.asdc.asi.it/bepposax/calibration.html, https://heasarc.gsfc.nasa.gov/docs/sax/sax.html.

  38. http://www.astro.isas.jaxa.jp/suzaku/.

  39. http://www.astro.isas.ac.jp/suzaku/caldb/, http://www.astro.isas.jaxa.jp/suzaku/process/caveats/.

  40. http://xmm2.esac.esa.int/external/xmm_sw_cal/calib/.

  41. https://optics.msfc.nasa.gov/.

  42. http://cxc.harvard.edu/.

  43. http://www.nustar.caltech.edu/.

  44. Orbiting Retrievable Far and Extreme Ultraviolet Spectrometers, 1993 and 1996 on the Astro-SPAS, a reusable shuttle-launched space platform (Grewing et al. 1998).

  45. http://www.ssl.berkeley.edu/euve/index.html.

  46. http://archive.stsci.edu/euve/.

  47. cf., http://fuse.pha.jhu.edu/analysis/calfuse_wp0.html; http://fuse.pha.jhu.edu/analysis/calfuse_wp1.html.

  48. IUE data are available from the Mikulski Archive for Space Telescopes (MAST), http://archive.stsci.edu/iue.

  49. http://www.stsci.edu/hst/; http://www.spacetelescope.org/.

  50. The two web sites http://www.nasa.gov/mission_pages/hubble/main/index.html and http://www.spacetelescope.org/about/general/instruments/ give an in-depth overview of HST, its history and its instruments.

  51. http://www.ir.isas.jaxa.jp/ASTRO-F/Outreach/souti_e.html.

  52. Chopping and nodding in perpendicular direction, used to reduce background signal in particular for point-source photometry.

  53. These bands are centred around the wavelengths \(56\,\upmu \hbox {m}, 100\,\upmu \hbox {m}\) and \(160\,\upmu \hbox {m}\), respectively. An in-depth description of the filter bandpasses and how they have to be used in comparison with other instruments can be found on the PACS calibration web sites http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb.

  54. http://www.cosmos.esa.int/web/herschel/home.

  55. http://www.cosmos.esa.int/web/planck.

  56. http://lambda.gsfc.nasa.gov/product/cobe.

  57. http://map.gsfc.nasa.gov.

  58. http://lambda.gsfc.nasa.gov.

  59. Preliminary results had indicated some discrepancy to WMAP, which could be eliminated by improved data analysis; for updated information, see the webpages of the Planck Collaboration http://www.cosmos.esa.int/web/planck/publications.

  60. http://www.cosmos.esa.int/web/planck/publications.

  61. The corresponding references are accessible through the webpage http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant.

  62. http://lasp.colorado.edu/see/calibration.htm.

  63. http://lasp.colorado.edu/home/sorce/instruments/sim/.

  64. http://lasp.colorado.edu/home/sorce/instruments/solstice/.

  65. http://lasp.colorado.edu/home/sorce/instruments/xps/in-flight-calibration/.

  66. http://solspec.projet.latmos.ipsl.fr/SOLSPEC_GB/Home.html.

  67. Taken during the Atmospheric Laboratory for Applications and Science (ATLAS) Space Shuttle missions ATLAS 1, March 1992, and ATLAS 3, November 1994.

  68. Note, however, that apertures and stops in the instrument itself were not taken into account in this way.

  69. UVCS is a coronagraph with external and internal occulters. Adjustment of the latter, which is done to reduce the level of scattered light, changes the aperture.

  70. The Lockheed Martin Advanced Technology Center recently changed its name to Space Technology Advanced Research and Development Laboratories, or STAR Labs.

  71. See also http://secchi.lmsal.com/EUVI/.

  72. http://www.stereo.rl.ac.uk/Documents/InstrumentPapers.html.

  73. http://cor1.gsfc.nasa.gov/publications/.

  74. The MEGS-A had to be turned off due to a failure of its CCD electronics in May 2014.

  75. http://lasp.colorado.edu/home/eve/data/ground-calibration-results/.

  76. http://archive.stsci.edu/.

  77. http://iris.lmsal.com/documents.html.

  78. http://hinode.nao.ac.jp/, http://xrt.cfa.harvard.edu/.

Abbreviations

AKARI :

Japanese space mission for infrared astronomy, formerly Astro-F

ANS :

Astronomical Netherlands Satellite

AXAF :

Advanced X-ray Astrophysics Facility, now Chandra

BeppoSAX :

Italian–Dutch satellite for X-ray astronomy

Chandra :

X-ray observatory, formerly AXAF

COBE :

Cosmic Background Explorer

CXO :

Chandra X-ray observatory

Euclid :

Future ESA mission to map the geometry of the dark Universe

EUVE :

Extreme Ultraviolet Explorer

EXOSAT :

European X-ray Observatory Satellite

FUSE :

Far-Ultraviolet Spectroscopic Explorer

Gaia :

ESA astrometry mission

GALEX :

Galaxy Evolution Explorer

Herschel :

ESA infrared and sub-millimetre telescope mission

Hinode :

Solar observatory, formerly Solar-B

HST :

Hubble Space Telescope

IRAS :

Infrared Astronomy Satellite

IRIS :

Interface Region Imaging Spectrograph

IRTS :

Infrared Telescope in Space

ISO :

Infrared Space Observatory

ISS :

International Space Station

IUE :

International Ultraviolet Explorer

JWST :

James Webb Space Telescope

MSX :

Midcourse Space Experiment

NuSTAR :

Nuclear Spectroscopic Telescope Array

OAO :

Orbiting Astronomical Observatory

ORFEUS :

Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer

OSO :

Orbiting Solar Observatory

Planck :

ESA mission for microwave astronomy

RHESSI :

Reuven Ramaty High-Energy Solar Spectroscopic Imager

ROSAT :

Röntgensatellit

Rosetta :

ESA mission to comet 67P/Churyumov–Gerasimenko

RXTE :

Rossi X-ray Timing Explorer

SDO :

Solar Dynamics Observatory

Skylab :

NASA space station

SMEX :

Small Explorer Mission

SMM :

Solar Maximum Mission

SNOE :

Student Nitric Oxide Explorer

SOHO :

Solar and Heliospheric Observatory

SORCE :

Solar Radiation and Climate Experiment

Spacelab :

Laboratory for use on Space Shuttle flights

SPARTAN :

Shuttle-launched satellites for solar studies

Spitzer :

Space Infrared Telescope Facility

STEREO :

Solar Terrestrial Relations Observatory

STS :

Space Transportation System

Suzaku :

Japanese X-ray astronomy mission, formerly Astro-E2

Swift :

NASA Gamma-Ray Burst Mission

TD-1 :

ESA UV mission

TIMED :

Thermosphere, Ionosphere and Mesosphere Energetics and Dynamics mission

TRACE :

Transition Region and Coronal Explorer

UARS :

Upper Atmosphere Research Satellite

Voyager :

NASA planetary and interstellar mission (two spacecraft, Voyager-1 and Voyager-2)

WFIRST :

Wide-Field Infrared Survey Telescope

WMAP :

Wilkinson Microwave Anisotropy Probe

XMM-Newton :

X-ray Multi-Mirror Mission

Yohkoh :

Solar X-ray observatory

2MASS:

Two Micron All Sky Survey

ACCESS:

Absolute Color Calibration Experiment for Standard Stars

ACIS:

Advanced CCD Imaging Spectrometer

ACRIM:

Active Cavity Radiometer Irradiance Monitor

ACS:

Advanced Camera for Surveys

ADS:

Astrophysics Data System

AIA:

Atmospheric Imaging Assembly

ALS:

Advanced Light Source

APS:

Active pixel sensor

ASM:

All-Sky Monitor

ATLAS:

Atmospheric Laboratory for Applications and Science, on the Space Shuttle

ATM:

Apollo Telescope Mount

BCS:

Bragg Crystal Spectrometer and bent crystal spectrometer

BESSY:

Berlin Electron Storage ring for Synchrotron radiation

BIPM:

Bureau International des Poids et Mesures

CALSPEC:

Calibration data base for the HST and the JWST, maintained by the STScI

CCD:

Charge-coupled device

CDS:

Coronal Diagnostic Spectrometer

CHIANTI:

An atomic database for spectroscopic diagnostics of astrophysical plasmas

CIPM:

Comité International des Poids et Mesures

CMB:

Cosmic Microwave Background

CME:

Coronal mass ejection

CNES:

Centre National d’Etudes Spatiales

COS:

Cosmic Origins Spectrograph

CSL:

Centre Spatial de Liège

CTE:

Charge transfer efficiency

DIARAD:

Differential Absolute Radiometer

ECR:

Electrically calibrated radiometer

EGS:

Extreme-ultraviolet Grating Spectrograph

EIS:

EUV Imaging Spectrometer

EIT:

Extreme-ultraviolet Imaging Telescope

EPIC:

European Photon Imaging Camera

ESA:

European Space Agency

ESP:

EUV spectro-photometer

ESR:

Electrical substitution radiometer

EUNIS:

Extreme-Ultraviolet Normal Incidence Spectrograph

EUV:

Extreme ultraviolet

EUVI:

EUV Imager

EVE:

Extreme ultraviolet Variability Experiment

FIR:

Far infrared

FIRAS:

Far Infrared Absolute Spectrophotometer

FIS:

Far Infrared Surveyor

FOC:

Faint Object Camera

FOS:

Faint Object Spectrograph

FOV:

Field of view

FTS:

Fourier transform spectrometer

FUV:

Far ultraviolet

FWHM:

Full width at half maximum

GEANT:

Geometry and Tracking, a high-energy photon and particle transport code

GI:

Grazing incidence

GIS:

Grazing incidence spectrometer

GRBM:

Gamma-ray Burst Monitor

GSFC:

Goddard Space Flight Center

HEASARC:

High-Energy Astrophysics Science Archive Research Center

HETG:

High-Energy Transmission Grating

HEXTE:

High-Energy X-ray Timing Experiment

HF:

Hickey–Frieden radiometer on NIMBUS-7

HFI:

High-Frequency Instrument

HI:

Heliospheric Imager

HIFI:

Heterodyne Instrument for the Far Infrared

HMI:

Helioseismic and Magnetic Imager for SDO

HPGSPC:

High-Pressure Gas Scintillator Proportional Counter

HRC:

High-Resolution Camera

HRI:

High-Resolution Imager

HRMA:

High-Resolution Mirror Assembly

HRTS:

High-Resolution Telescope and Spectrograph

HUT:

Hopkins Ultraviolet Telescope

HXD:

Hard X-ray Detector

HXT:

Hard X-ray Telescope

IACHEC:

International Astronomical Consortium for High-Energy Calibration

IAS:

Institut d’Astrophysique Spatiale

IAU:

International Astronomical Union

IR:

Infrared

IRC:

InfraRed Camera

ISAS:

Institute of Space and Astronautical Science, Japan

ISSI:

International Space Science Institute

JAXA:

Japan Aerospace Exploration Agency

KAO:

Kuiper Airborne Observatory

\(\mathrm {\Lambda }\)AMBDA:

Legacy Archive for Microwave Background Data Analysis

LASCO:

Large Angle Spectroscopic Coronagraph

LASP:

Laboratory for Atmospheric and Space Physics

LECS:

Low-Energy Concentrator Spectrometer

LETG:

Low-Energy Transmission Grating

LFI:

Low-Frequency Instrument

LMSAL:

Lockheed Martin Solar and Astrophysics Laboratory

LTE:

Local thermodynamic equilibrium

MAST:

Mikulski Archive for Space Telescopes

MCP:

Microchannel plate

MECS:

Medium Energy Concentrator Spectrometer

MEGS:

Multiple EUV Grating Spectrograph

MIR:

Mid infrared

MIT:

Massachusetts Institute of Technology

MLS:

Metrology Light Source

MOS:

Metal oxide semiconductor

MPE:

Max-Planck-Institut für extraterrestrische Physik

MPG:

Max-Planck-Gesellschaft

MPS:

Max-Planck-Institut für Sonnensystemforschung, formerly Max-Planck-Institut für Aeronomie (MPAE)

MSFC:

Marshall Space Flight Center

MUV:

Medium ultraviolet

NASA:

National Aeronautics and Space Administration (US)

NBS:

National Bureau of Standards, now NIST

NI:

Normal incidence

NIR:

Near infrared

NIRSpec:

Near infrared multiobject dispersive spectrograph to be flown on the JWST

NIS:

Normal incidence spectrometer

NISP:

Near-infrared Spectrograph and Photometer on Euclid

NIST:

National Institute of Standards and Technology (US)

NLTE:

Non-local thermodynamic equilibrium

NRL:

Naval Research Laboratory

NUV:

Near ultraviolet

PACS:

Photodetector Array Camera and Spectrometer for Herschel

PANTER:

X-ray test facility near München, Germany

PCA:

Proportional Counter Array

PDS:

Phoswich Detection System

PMOD/WRC:

Physikalisch-Meteorologisches Observatorium Davos / World Radiation Center

PSF:

Point spread function

PSI:

Paul Scherrer Institut

PSPC:

Position Sensitive Proportional Counters

PTB:

Physikalisch-Technische Bundesanstalt

QCM:

Quartz-crystal micro balance

QE:

Quantum efficiency

RAL:

Rutherford Appleton Laboratory

RaMCaF:

Rainwater Memorial Calibration Facility

RCSS:

Radiometric calibration spectral source

RMC:

Rotation Modulation Collimator

SAA:

South Atlantic Anomaly

SAO:

Smithsonian Astrophysical Observatory

SARR:

Space absolute radiometric reference scale

SDD:

Silicon drift detector

SECCHI:

Sun Earth Connection Coronal and Heliospheric Investigation

SED:

Spectral energy distribution

SEE:

Solar EUV Experiment

SEM:

Solar Extreme-ultraviolet Monitor

SERTS:

Solar Extreme-ultraviolet Research Telescope and Spectrograph

SI:

Système International d’Unités, International System of Units

SIM:

Spectral Irradiance Monitor

SIRS:

Solar irradiance reference spectra

SM1(2,3,4):

HST Servicing Missions

SN:

Supernova

SolACES:

Solar Auto-Calibrating EUV/UV Spectrophotometer

SOLSTICE:

Solar-Stellar Irradiance Comparison Experiment

SOT:

Solar Optical Telescope

SPIRE:

Spectral and Photometric Imaging Receiver

SSI:

Solar spectral irradiance

STIS:

Space Telescope Imaging Spectrograph

STScI:

Space Telescope Science Institute

SUMER:

Solar Ultraviolet Measurements of Emitted Radiation

SURF:

Synchrotron Ultraviolet Radiation Facility

SUSIM:

Solar Ultraviolet Spectral Irradiance Monitor

SXT:

Soft X-ray Telescope

TCF:

Telescope Calibration Facility (NIST)

TIM:

Total Irradiance Monitor

TSI:

Total solar irradiance

UKSA:

United Kingdom Space Agency

UV:

Ultraviolet

UVCS:

Ultraviolet Coronagraph Spectrometer

VIRGO:

Variability of Solar Irradiance and Gravity Oscillations

VUV:

Vacuum ultraviolet

WBS:

Wide Band Spectrometer

WD:

White Dwarf

WFC:

Wide Field Camera

XACT:

X-ray Astronomy Calibration and Testing, Palermo, Italy

XIS:

X-ray Imaging Spectrometer

XPS:

XUV Photometer System

XRCF:

X-ray and Cryogenics Facility, NASA MSFC

XRS:

X-ray Spectrometer

XRT:

X-ray Telescope

XUV:

Extreme ultraviolet

References

  • Aalders JWG, van Duinen RJ, Luinge W, Wildeman KJ (1975) Calibration of the UV experiment in ANS. Space Sci Instrum 1:343–350

    ADS  Google Scholar 

  • Amati L, Cinti MN, Feroci M, Costa E, Frontera F, dal Fiume D, Collina P, Nicastro L, Orlandini M, Palazzi E, Rapisarda M, Zavattini G (1997) BeppoSAX GRBM on-ground calibration data analysis. In: Siegmund OH, Gummin MA (eds) EUV, X-ray, and gamma-ray instrumentation for astronomy viii, society of photo-optical instrumentation engineers (SPIE) conference series, vol 3114 pp 176–185

  • Amendola L, Appleby S, Bacon D, Baker T, Baldi M, Bartolo N, Blanchard A, Bonvin C, Borgani S, Branchini E, Burrage C, Camera S, Carbone C, Casarini L, Cropper M, de Rham C, Di Porto C, Ealet A, Ferreira PG, Finelli F, García-Bellido J, Giannantonio T, Guzzo L, Heavens A, Heisenberg L, Heymans C, Hoekstra H, Hollenstein L, Holmes R, Horst O, Jahnke K, Kitching TD, Koivisto T, Kunz M, La Vacca G, March M, Majerotto E, Markovic K, Marsh D, Marulli F, Massey R, Mellier Y, Mota DF, Nunes N, Percival W, Pettorino V, Porciani C, Quercellini C, Read J, Rinaldi M, Sapone D, Scaramella R, Skordis C, Simpson F, Taylor A, Thomas S, Trotta R, Verde L, Vernizzi F, Vollmer A, Wang Y, Weller J, Zlosnik T (2013) Cosmology and fundamental physics with the Euclid satellite. Living Rev Relativ 16:6. doi:10.12942/lrr-2013-6

    Article  ADS  Google Scholar 

  • Arimatsu K, Doi Y, Wada T, Takita S, Kawada M, Matsuura S, Ootsubo T, Kataza H (2014) Point source calibration of the AKARI/FIS all-sky survey maps for stacking analysis. PASJ 66:47. doi:10.1093/pasj/psu010

    ADS  Google Scholar 

  • Arnold D, Ulm G (1994) Determination of photon emission probabilities of radionuclides using a Si(Li) detector calibrated by the primary standard source, BESSY. Nucl Instrum Methods Phys Res A 339:43–48. doi:10.1016/0168-9002(94)91776-0

    Article  ADS  Google Scholar 

  • Arp U, Clark CW, Farrell AP, Fein E, Furst ML, Hagley EW (2002) Synchrotron ultraviolet radiation facility SURF III. Rev Sci Instrum 73:1674–1676. doi:10.1063/1.1445833

    Article  ADS  Google Scholar 

  • Arvesen JC, Griffin RN Jr, Pearson BD Jr (1969) Determination of extraterrestrial solar spectral irradiance from a research aircraft. Appl Opt 8:2215–2232. doi:10.1364/AO.8.002215

    Article  ADS  Google Scholar 

  • Aschenbach B, Bräuninger H, Briel U, Brinkmann W, Fink H, Heinecke N, Hippmann H, Kettenring G, Metzner G, Ondrusch A (1981) The ROSAT mission. Space Sci Rev 30:569–573. doi:10.1007/BF01246075

    Article  ADS  Google Scholar 

  • Aumann HH, Beichman CA, Gillett FC, de Jong T, Houck JR, Low FJ, Neugebauer G, Walker RG, Wesselius PR (1984) Discovery of a shell around Alpha Lyrae. ApJ 278:L23–L27. doi:10.1086/184214

    Article  ADS  Google Scholar 

  • Bailey SM, Woods TN, Barth CA, Solomon SC (1999) Measurements of the solar soft X-ray irradiance from the Student Nitric Oxide Explorer. Geophys Res Lett 26:1255–1258. doi:10.1029/1999GL900236

    Article  ADS  Google Scholar 

  • Ballester P, Rosa MR (1997) Modeling echelle spectrographs. A&AS 126:563–571. doi:10.1051/aas:1997283

    Article  ADS  Google Scholar 

  • Balog Z, Müller T, Nielbock M, Altieri B, Klaas U, Blommaert J, Linz H, Lutz D, Moór A, Billot N, Sauvage M, Okumura K (2014) The Herschel-PACS photometer calibration. Point-source flux calibration for scan maps. Exp Astron 37:129–160. doi:10.1007/s10686-013-9352-3

    Article  ADS  Google Scholar 

  • Barnstedt J, Kappelmann N, Appenzeller I, Fromm A, Gölz M, Grewing M, Gringel W, Haas C, Hopfensitz W, Krämer G, Krautter J, Lindenberger A, Mandel H, Widmann H (1999) The ORFEUS II Echelle Spectrometer: instrument description, performance and data reduction. A&AS 134:561–567. doi:10.1051/aas:1999156

    Article  ADS  Google Scholar 

  • Bautz MW, Pivovaroff MJ, Kissel SE, Prigozhin GY, Isobe T, Jones SE, Ricker GR, Thornagel R, Kraft S, Scholze F, Ulm G (2000) Absolute calibration of ACIS X-ray CCDs using calculable undispersed synchrotron radiation. In: Truemper JE, Aschenbach B (eds) X-ray optics, instruments, and missions iii, society of photo-optical instrumentation engineers (SPIE) conference series, vol 4012 pp 53–67

  • BenMoussa A, Gissot S, Schühle U, Del Zanna G, Auchère F, Mekaoui S, Jones AR, Walton D, Eyles CJ, Thuillier G, Seaton D, Dammasch IE, Cessateur G, Meftah M, Andretta V, Berghmans D, Bewsher D, Bolsée D, Bradley L, Brown DS, Chamberlin PC, Dewitte S, Didkovsky LV, Dominique M, Eparvier FG, Foujols T, Gillotay D, Giordanengo B, Halain JP, Hock RA, Irbah A, Jeppesen C, Judge DL, Kretzschmar M, McMullin DR, Nicula B, Schmutz W, Ucker G, Wieman S, Woodraska D, Woods TN (2013) On-orbit degradation of solar instruments. Sol Phys 288:389–434. doi:10.1007/s11207-013-0290-z

    Article  ADS  Google Scholar 

  • BenMoussa A, Giordanengo B, Gissot S, Dammasch IE, Dominique M, Hochedez JF, Soltani A, Bourzgui N, Saito T, Schühle U, Gottwald A, Kroth U, Jones AR (2015) Degradation assessment of LYRA after 5 years on orbit—technology demonstration. Exp Astron 39:29–43. doi:10.1007/s10686-014-9437-7

    Article  ADS  Google Scholar 

  • Bewsher D, Brown DS, Eyles CJ, Kellett BJ, White GJ, Swinyard B (2010) Determination of the photometric calibration and large-scale flatfield of the STEREO heliospheric imagers: I. HI-1. Sol Phys 264:433–460. doi:10.1007/s11207-010-9582-8

    Article  ADS  Google Scholar 

  • Bewsher D, Brown DS, Eyles CJ (2012) Long-term evolution of the photometric calibration of the STEREO heliospheric imagers: I. HI-1. Sol Phys 276:491–499. doi:10.1007/s11207-011-9874-7

    Article  ADS  Google Scholar 

  • Blackwell DE (1975) The presidential address: uncertainty in astronomy. QJRAS 16:361–377

    ADS  Google Scholar 

  • Blackwell DE, Leggett SK, Petford AD, Mountain CM, Selby MJ (1983) Absolute calibration of the infrared flux from VEGA at 1.24, 2.20, 3.76 and 4.6 microns by comparison with a standard furnace. MNRAS 205:897–905

    Article  ADS  Google Scholar 

  • Blades JC, Osmer SJ (1994) Calibrating Hubble Space Telescope, proceedings of a workshop. Bull Am Astron Soc 26:1212

  • Bless RC, Code AD, Fairchild ET (1976) Ultraviolet photometry from the Orbiting Astronomical Observatory. XXI—absolute energy distribution of stars in the ultraviolet. ApJ 203:410–416. doi:10.1086/154092

    Article  ADS  Google Scholar 

  • Boella G, Chiappetti L, Conti G, Cusumano G, del Sordo S, La Rosa G, Maccarone MC, Mineo T, Molendi S, Re S, Sacco B, Tripiciano M (1997) The medium-energy concentrator spectrometer on board the BeppoSAX X-ray astronomy satellite. A&AS 122:327–340. doi:10.1051/aas:1997138

    Article  ADS  Google Scholar 

  • Boerner P, Edwards C, Lemen J, Rausch A, Schrijver C, Shine R, Shing L, Stern R, Tarbell T, Title A, Wolfson CJ, Soufli R, Spiller E, Gullikson E, McKenzie D, Windt D, Golub L, Podgorski W, Testa P, Weber M (2012) Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275:41–66. doi:10.1007/s11207-011-9804-8

    Article  ADS  Google Scholar 

  • Boerner PF, Testa P, Warren H, Weber MA, Schrijver CJ (2014) Photometric and thermal cross-calibration of solar EUV instruments. Sol Phys 289:2377–2397. doi:10.1007/s11207-013-0452-z

    Article  ADS  Google Scholar 

  • Boggess A, Carr FA, Evans DC, Fischel D, Freeman HR, Fuechsel CF, Klinglesmith DA, Krueger VL, Longanecker GW, Moore JV (1978) The IUE spacecraft and instrumentation. Nature 275:372–377. doi:10.1038/275372a0

    Article  ADS  Google Scholar 

  • Bohlin JD, Frost KJ, Burr PT, Guha AK, Withbroe GL (1980) Solar maximum mission. Sol Phys 65:5–14. doi:10.1007/BF00151380

    Article  ADS  Google Scholar 

  • Bohlin RC (2007) HST stellar standards with 1 % accuracy in absolute flux. In: Sterken C (ed) The future of photometric, spectrophotometric and polarimetric standardization, astronomical society of the pacific conference series, vol 364, p 315

  • Bohlin RC (2014) Hubble Space Telescope CALSPEC flux standards: Sirius (and Vega). AJ 147:127. doi:10.1088/0004-6256/147/6/127

    Article  ADS  Google Scholar 

  • Bohlin RC, Frimout D, Lillie CF (1974) Absolute fix measurements in the rocket ultraviolet. A&A 30:127–134

    ADS  Google Scholar 

  • Bohlin RC, Harris AW, Holm AV, Gry C (1990) The ultraviolet calibration of the Hubble Space Telescope. IV—absolute IUE fluxes of Hubble Space Telescope standard stars. ApJS 73:413–439. doi:10.1086/191474

    Article  ADS  Google Scholar 

  • Bohlin RC, Colina L, Finley DS (1995) White dwarf standard stars: G191-B2B, GD 71, GD 153, HZ 43. AJ 110:1316–1325. doi:10.1086/117606

    Article  ADS  Google Scholar 

  • Bohlin RC, Gordon KD, Tremblay PE (2014) Techniques and review of absolute flux calibration from the ultraviolet to the mid-infrared. PASP 126:711–732. doi:10.1086/677655

    ADS  Google Scholar 

  • Böhm T, Holschneider M, Lignières F, Petit P, Rainer M, Paletou F, Wade G, Alecian E, Carfantan H, Blazère A, Mirouh GM (2015) Discovery of starspots on Vega. First spectroscopic detection of surface structures on a normal A-type star. A&A 577:A64. doi:10.1051/0004-6361/201425425

    Article  ADS  Google Scholar 

  • Booth AJ, Selby MJ, Blackwell DE, Petford AD, Arribas S (1989) Determination of the absolute flux from VEGA at 2.250 microns. A&A 218:167–168

    ADS  Google Scholar 

  • Bottema M (1993) Reflective correctors for the Hubble Space Telescope axial instruments. Appl Opt 32:1768–1774. doi:10.1364/AO.32.001768

    Article  ADS  Google Scholar 

  • Bowen PJ, Bowles JA, Glencross WM, Speer RJ, Timothy AF, Timothy JG, Willmore AP (1971) A grazing incidence monochromator for satellite studies of the solar He II Lyman-alpha line at 303.8 Å. Appl Opt 10:28–33. doi:10.1364/AO.10.000028

    Article  ADS  Google Scholar 

  • Bowyer S, Malina RF (1991) The extreme ultraviolet explorer mission. Adv Space Res 11:205–215. doi:10.1016/0273-1177(91)90077-W

    Article  ADS  Google Scholar 

  • Bradt HV, Rothschild RE, Swank JH (1993) X-ray timing explorer mission. A&AS 97:355–360

    ADS  Google Scholar 

  • Brejnholt NF, Christensen FE, Jakobsen AC, Hailey CJ, Koglin JE, Blaedel KL, Stern M, Thornhill D, Sleator C, Zhang S, Craig WW, Madsen KK, Decker T, Pivovaroff MJ, Vogel JK (2011) NuSTAR ground calibration: the Rainwater Memorial Calibration Facility (RaMCaF). In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 8147. doi:10.1117/12.894659

  • Brejnholt NF, Christensen FE, Westergaard NJ, Hailey CJ, Koglin JE, Craig WW (2012) NuSTAR on-ground calibration: II. Effective area. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 8443, p 1. doi:10.1117/12.925631

  • Brekke P, Thompson WT, Woods TN, Eparvier FG (2000) The extreme-ultraviolet solar irradiance spectrum observed with the coronal diagnostic spectrometer (CDS) on SOHO. ApJ 536:959–970. doi:10.1086/308966

    Article  ADS  Google Scholar 

  • Bridges JM, Ott WR (1977) Vacuum ultraviolet radiometry. III—the argon mini-arc as a new secondary standard of spectral radiance. Appl Opt 16:367–376. doi:10.1364/AO.16.000367

    Article  ADS  Google Scholar 

  • Briel UG, B A, Hasinger G, Hippmann H, Pfeffermann E, Predehl P, Schmitt JHMM, Schwentker O, Voges W, Zimmermann U, George IM, Snowden SL, Turner TJ, David FRJ L Harnden, Kearns KE, Zombeck MV, Barstow MA, Osborne JP, Pye JP, Watson M, West RG, Willingale R (1997) ROSAT user’s handbook. Max-Planck-Institut für extraterrestrische Physik, Garching, D, 1st edn. http://heasarc.gsfc.nasa.gov/docs/rosat/ruh/handbook/handbook.html

  • Broadfoot AL, Sandel BR, Shemansky DE, Atreya SK, Donahue TM, Moos HW, Bertaux JL, Blamont JE, Ajello JM, Strobel DF (1977) Ultraviolet spectrometer experiment for the Voyager mission. Space Sci Rev 21:183–205. doi:10.1007/BF00200850

    Article  ADS  Google Scholar 

  • Brown CM, Feldman U, Seely JF, Korendyke CM, Hara H (2008) Wavelengths and intensities of spectral lines in the 171–211 and 245–291 Å ranges from five solar regions recorded by the extreme-ultraviolet imaging spectrometer (EIS) on Hinode. ApJS 176:511–535. doi:10.1086/529378

    Article  ADS  Google Scholar 

  • Brown DS, Bewsher D, Eyles CJ (2009) Calibrating the pointing and optical parameters of the STEREO heliospheric imagers. Sol Phys 254:185–225. doi:10.1007/s11207-008-9277-6

    Article  ADS  Google Scholar 

  • Brueckner GE, Edlow KL, Floyd LEIV, Lean JL, VanHoosier ME (1993) The solar ultraviolet spectral irradiance monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J Geophys Res 98:10,695–10,711. doi:10.1029/93JD00410

    Article  ADS  Google Scholar 

  • Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, Moses JD, Socker DG, Dere KP, Lamy PL, Llebaria A, Bout MV, Schwenn R, Simnett GM, Bedford DK, Eyles CJ (1995) The large angle spectroscopic coronagraph (LASCO). Sol Phys 162:357–402. doi:10.1007/BF00733434

    Article  ADS  Google Scholar 

  • Burlov-Vasiljev KA, Gurtovenko EA, Matvejev YB (1995) New absolute measurements of the solar spectrum. Sol Phys 157:51–73. doi:10.1007/BF00680609

    Article  ADS  Google Scholar 

  • Butkovskaya V, Plachinda S, Valyavin G, Baklanova D, Lee BC (2011) The long-term variability of Vega. Astron Nachr 332:956–960. doi:10.1002/asna.201111587

    Article  ADS  Google Scholar 

  • Butkovskaya VV (2014) On the variability of Vega. Bull Crime Astrophys Obs 110:80–84. doi:10.3103/S0190271714010100

    Article  ADS  Google Scholar 

  • Canfield LR, Vest RE, Korde R, Schmidtke H, Desor R (1998) Absolute silicon photodiodes for 160 nm to 254 nm photons. Metrologia 35:329. doi:10.1088/0026-1394/35/4/19

    Article  ADS  Google Scholar 

  • Carlson RW, Ogawa HS, Phillips E, Judge DL (1984) Absolute measurement of the extreme uv solar flux. Appl Opt 23(14):2327–2332. doi:10.1364/AO.23.002327. http://ao.osa.org/abstract.cfm?URI=ao-23-14-2327

  • Chipman EG (1981) The solar maximum mission. ApJ 244:L113–L115. doi:10.1086/183493

    Article  ADS  Google Scholar 

  • Clette F, Hochedez JF, Newmark JS, Moses JD, Auchère F, Defise JM, Delaboudinière JP (2002) The radiometric calibration of the extreme ultraviolet imaging telescope. ISSI Sci Rep Ser 2:121–134

    ADS  Google Scholar 

  • Code AD (1960) Stellar energy distribution. In: Greenstein JL (ed) Stellar atmospheres, pp 50–87

  • Code AD, Houck TE, McNall JF, Bless RC, Lillie CF (1970) Ultraviolet photometry from the orbiting astronomical observatory. I. Instrum Oper ApJ 161:377–388. doi:10.1086/150545

    Google Scholar 

  • Cohen M, Walker RG, Barlow MJ, Deacon JR (1992a) Spectral irradiance calibration in the infrared. I—ground-based and IRAS broadband calibrations. AJ 104:1650–1657. doi:10.1086/116349

    Article  ADS  Google Scholar 

  • Cohen M, Walker RG, Witteborn FC (1992b) Spectral irradiance calibration in the infrared. II—Alpha Tau and the recalibration of the IRAS low resolution spectrometer. AJ 104:2030–2044. doi:10.1086/116379

    Article  ADS  Google Scholar 

  • Cohen M, Walker RG, Jayaraman S, Barker E, Price SD (2001) Spectral irradiance calibration in the infrared. XII. Radiometric measurements from the midcourse space experiment. AJ 121:1180–1191. doi:10.1086/318751

    Article  ADS  Google Scholar 

  • Cohen M, Wheaton WA, Megeath ST (2003) Spectral irradiance calibration in the infrared. XIV. The absolute calibration of 2MASS. AJ 126:1090–1096. doi:10.1086/376474

    Article  ADS  Google Scholar 

  • Colina L, Bohlin RC (1994) Absolute flux calibration of optical spectrophotometric standard stars. AJ 108:1931–1935. doi:10.1086/117206

    Article  ADS  Google Scholar 

  • Conard SJ, Barkhouser RH, Evans JP, Friedman SD, Kruk JW, Moos HW, Ohl RG, Sahnow DJ (2000) Far Ultraviolet Spectroscopic Explorer optical system: lessons learned. In: Fineschi S, Korendyke CM, Siegmund OH, Woodgate BE (eds) Instrumentation for UV/EUV astronomy and solar missions, society of photo-optical instrumentation engineers (SPIE) conference series, vol 4139, pp 186–198

  • Cook AH (1994) The observational foundations of physics. Cambridge University Press, New York

    Google Scholar 

  • Crommelynck D, Fichot A, Lee RB III, Romero J (1995) First realisation of the space absolute radiometric reference (SARR) during the ATLAS 2 flight period. Adv Space Res 16:17–23. doi:10.1016/0273-1177(95)00261-C

    Article  ADS  Google Scholar 

  • Culhane JL, Harra LK, James AM, Al-Janabi K, Bradley LJ, Chaudry RA, Rees K, Tandy JA, Thomas P, Whillock MCR, Winter B, Doschek GA, Korendyke CM, Brown CM, Myers S, Mariska J, Seely J, Lang J, Kent BJ, Shaughnessy BM, Young PR, Simnett GM, Castelli CM, Mahmoud S, Mapson-Menard H, Probyn BJ, Thomas RJ, Davila J, Dere K, Windt D, Shea J, Hagood R, Moye R, Hara H, Watanabe T, Matsuzaki K, Kosugi T, Hansteen V, Wikstol Ø (2007) The EUV imaging spectrometer for Hinode. Sol Phys 243:19–61. doi:10.1007/s01007-007-0293-1

    Article  ADS  Google Scholar 

  • Danzmann K, Günther M, Fischer J, Kühne M, Kock M (1988) High current hollow cathode as a radiometric transfer standard source for the extreme vacuum ultraviolet. Appl Opt 27:4947–4951. doi:10.1364/AO.27.004947

    Article  ADS  Google Scholar 

  • Davidsen AF, Long KS, Durrance ST, Blair WP, Bowers CW, Conard SJ, Feldman PD, Ferguson HC, Fountain GH, Kimble RA, Kriss GA, Moos HW, Potocki KA (1992) The Hopkins Ultraviolet Telescope—performance and calibration during the Astro-1 mission. ApJ 392:264–271. doi:10.1086/171424

    Article  ADS  Google Scholar 

  • De Pontieu B, Title AM, Lemen JR, Kushner GD, Akin DJ, Allard B, Berger T, Boerner P, Cheung M, Chou C, Drake JF, Duncan DW, Freeland S, Heyman GF, Hoffman C, Hurlburt NE, Lindgren RW, Mathur D, Rehse R, Sabolish D, Seguin R, Schrijver CJ, Tarbell TD, Wülser JP, Wolfson CJ, Yanari C, Mudge J, Nguyen-Phuc N, Timmons R, van Bezooijen R, Weingrod I, Brookner R, Butcher G, Dougherty B, Eder J, Knagenhjelm V, Larsen S, Mansir D, Phan L, Boyle P, Cheimets PN, DeLuca EE, Golub L, Gates R, Hertz E, McKillop S, Park S, Perry T, Podgorski WA, Reeves K, Saar S, Testa P, Tian H, Weber M, Dunn C, Eccles S, Jaeggli SA, Kankelborg CC, Mashburn K, Pust N, Springer L, Carvalho R, Kleint L, Marmie J, Mazmanian E, Pereira TMD, Sawyer S, Strong J, Worden SP, Carlsson M, Hansteen VH, Leenaarts J, Wiesmann M, Aloise J, Chu KC, Bush RI, Scherrer PH, Brekke P, Martinez-Sykora J, Lites BW, McIntosh SW, Uitenbroek H, Okamoto TJ, Gummin MA, Auker G, Jerram P, Pool P, Waltham N (2014) The interface region imaging spectrograph (IRIS). Sol. Phys. 289:2733–2779. doi:10.1007/s11207-014-0485-y

    Article  ADS  Google Scholar 

  • de Vries CP, den Herder JW, Gabriel C, Gonzalez-Riestra R, Ibarra A, Kaastra JS, Pollock AMT, Raassen AJJ, Paerels FBS (2015) Calibration and in-orbit performance of the reflection grating spectrometer onboard XMM-Newton. A&A 573:A128. doi:10.1051/0004-6361/201423704

    Article  ADS  Google Scholar 

  • Defise JM, Song XY, Delaboudiniere JP, Artzner GE, Carabetian C, Hochedez JFE, Brunaud J, Moses JD, Catura RC, Clette F, Maucherat AJ (1995) Calibration of the EIT instrument for the SOHO mission. In: Fineschi S (ed) X-ray and EUV/FUV spectroscopy and polarimetry, society of photo-optical instrumentation engineers (SPIE) conference series, vol 2517, pp 29–39

  • Del Zanna G, Bromage BJI, Landi E, Landini M (2001) Solar EUV spectroscopic observations with SOHO/CDS. I. An in-flight calibration study. A&A 379:708–734. doi:10.1051/0004-6361:20011220

    Article  ADS  Google Scholar 

  • Del Zanna G, Andretta V, Chamberlin PC, Woods TN, Thompson WT (2010) The EUV spectrum of the Sun: long-term variations in the SOHO CDS NIS spectral responsivities. A&A 518:A49. doi:10.1051/0004-6361/200912904

    Article  ADS  Google Scholar 

  • Delaboudinière JP, Artzner GE, Brunaud J, Gabriel AH, Hochedez JF, Millier F, Song XY, Au B, Dere KP, Howard RA, Kreplin R, Michels DJ, Moses JD, Defise JM, Jamar C, Rochus P, Chauvineau JP, Marioge JP, Catura RC, Lemen JR, Shing L, Stern RA, Gurman JB, Neupert WM, Maucherat A, Clette F, Cugnon P, van Dessel EL (1995) EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Sol Phys 162:291–312. doi:10.1007/BF00733432

    Article  ADS  Google Scholar 

  • den Herder JW, Brinkman AC, Kahn SM, Branduardi-Raymont G, Thomsen K, Aarts H, Audard M, Bixler JV, den Boggende AJ, Cottam J, Decker T, Dubbeldam L, Erd C, Goulooze H, Güdel M, Guttridge P, Hailey CJ, Janabi KA, Kaastra JS, de Korte PAJ, van Leeuwen BJ, Mauche C, McCalden AJ, Mewe R, Naber A, Paerels FB, Peterson JR, Rasmussen AP, Rees K, Sakelliou I, Sako M, Spodek J, Stern M, Tamura T, Tandy J, de Vries CP, Welch S, Zehnder A (2001) The reflection grating spectrometer on board XMM-Newton. A&A 365:L7–L17. doi:10.1051/0004-6361:20000058

    Article  ADS  Google Scholar 

  • Didkovsky L, Judge D, Wieman S, Woods T, Jones A (2012) EUV spectrophotometer (ESP) in extreme ultraviolet variability experiment (EVE): algorithms and calibrations. Sol Phys 275:179–205. doi:10.1007/s11207-009-9485-8

    Article  ADS  Google Scholar 

  • Dixon WV, Blair WP, Kruk JW, Romelfanger ML (2013) The Hopkins Ultraviolet Telescope: the final archive. PASP 125:431–443. doi:10.1086/670227

    Article  ADS  Google Scholar 

  • Dudok de Wit T (2011) A method for filling gaps in solar irradiance and solar proxy data. A&A 533:A29. doi:10.1051/0004-6361/201117024

    Article  ADS  Google Scholar 

  • Dudok de Wit T (2014) Some regression problems in solar-terrestrial sciences: learning from mistakes. In: Fraix-Burnet D (ed) EAS publications series, vol 66, pp 77–87. doi:10.1051/eas/1466007

  • Engelke CW, Price SD, Kraemer KE (2006) Spectral irradiance calibration in the infrared. XVI. Improved accuracy in the infrared spectra of the secondary and tertiary standard calibration stars. AJ 132:1445–1463. doi:10.1086/505865

    Article  ADS  Google Scholar 

  • Engelke CW, Price SD, Kraemer KE (2010) Spectral irradiance calibration in the infrared. XVII. Zero-magnitude broadband flux reference for visible-to-infrared photometry. AJ 140:1919–1928. doi:10.1088/0004-6256/140/6/1919

    Article  ADS  Google Scholar 

  • European Space Agency (1994) Horizon 2000 plus—European space science in the 21st century. Tech. rep., ESA, ESA SP-1180

  • Fazio GG, Hora JL, Allen LE, Ashby MLN, Barmby P, Deutsch LK, Huang JS, Kleiner S, Marengo M, Megeath ST, Melnick GJ, Pahre MA, Patten BM, Polizotti J, Smith HA, Taylor RS, Wang Z, Willner SP, Hoffmann WF, Pipher JL, Forrest WJ, McMurty CW, McCreight CR, McKelvey ME, McMurray RE, Koch DG, Moseley SH, Arendt RG, Mentzell JE, Marx CT, Losch P, Mayman P, Eichhorn W, Krebs D, Jhabvala M, Gezari DY, Fixsen DJ, Flores J, Shakoorzadeh K, Jungo R, Hakun C, Workman L, Karpati G, Kichak R, Whitley R, Mann S, Tollestrup EV, Eisenhardt P, Stern D, Gorjian V, Bhattacharya B, Carey S, Nelson BO, Glaccum WJ, Lacy M, Lowrance PJ, Laine S, Reach WT, Stauffer JA, Surace JA, Wilson G, Wright EL, Hoffman A, Domingo G, Cohen M (2004) The infrared array camera (IRAC) for the Spitzer space telescope. ApJS 154:10–17. doi:10.1086/422843

    Article  ADS  Google Scholar 

  • Finley DS, Basri G, Bowyer S (1984) Self-consistent recalibration of IUE determination of hot DA white dwarf effective temperatures. In: Mead JM, Chapman RD, Kondo Y (eds) NASA conference publication, vol 2349, pp 277–280

  • Finley DS, Basri G, Bowyer S (1990) The temperature scale of hot DA white dwarfs—temperatures from far-ultraviolet continuum fluxes. ApJ 359:483–498. doi:10.1086/169080

    Article  ADS  Google Scholar 

  • Fleck B, Domingo V, Poland AI (1995) The SOHO mission: an overview. Sol Phys 162(1–2):1–37

  • Foukal PV, Hoyt C, Kochling H, Miller P (1990) Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers. Appl Opt 29(7):988–993. doi:10.1364/AO.29.000988. http://ao.osa.org/abstract.cfm?URI=ao-29-7-988

  • Fox NP, Martin JE (1990) Comparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02 %. Appl Opt 29(31):4686–4693. doi:10.1364/AO.29.004686. http://ao.osa.org/abstract.cfm?URI=ao-29-31-4686

  • Frazin RA, Romoli M, Kohl JL, Gardner LD, Wang D, Howard RA, Kucera TA (2002) White light intercalibrations of UVCS, LASCO-C2 and Spartan 201/WLC. ISSI Sci Rep Ser 2:249–263

    ADS  Google Scholar 

  • Freyberg MJ, Bräuninger H, Burkert W, Hartner GD, Citterio O, Mazzoleni F, Pareschi G, Spiga D, Romaine S, Gorenstein P, Ramsey BD (2005) The MPE X-ray test facility PANTER: calibration of hard X-ray (15–50 kev) optics. Exp Astron 20:405–412. doi:10.1007/s10686-006-9068-8

    Article  ADS  Google Scholar 

  • Fröhlich C (2013) Solar radiometry. In: Huber M, Pauluhn A, Culhane J, Timothy J, Wilhelm K, Zehnder A (eds) Observing photons in space. Springer, London, pp 565–581

    Chapter  Google Scholar 

  • Fröhlich C (2015a) Degradation of radiometers in space: application to VIRGO TSI. Metrologia. ftp://ftp.pmodwrc.ch/pub/Claus/VIRGO-TSI/VIRGO_TSI-vers64.pdf

  • Fröhlich C (2015b) VIRGO radiometry: update of the characterization. Metrologia. ftp://ftp.pmodwrc.ch/pub/Claus/VIRGO-TSI/VIRGO_2CharSpace.pdf

  • Fröhlich C, Lean J (1998) Total solar irradiance variations: the construction of a composite and its comparison with models. In: Deubner FL, Christensen-Dalsgaard J, Kurtz D (eds) IAU symposium 185: new eyes to see inside the sun and stars. Kluwer Academic Publ., The Netherlands, pp 89–102

  • Fröhlich C, Crommelynck DA, Wehrli C, Anklin M, Dewitte S, Fichot A, Finsterle W, Jiménez A, Chevalier A, Roth H (1997) In-flight performance of the VIRGO solar irradiance instruments on SOHO. Sol Phys 175:267–286. doi:10.1023/A:1004929108864

    Article  ADS  Google Scholar 

  • Fulton T, Hopwood R, Baluteau JP, Benielli D, Imhof P, Lim T, Lu N, Marchili N, Naylor D, Polehampton E, Swinyard B, Valtchanov I (2014) Herschel SPIRE FTS relative spectral response calibration. Exp Astron 37:381–395. doi:10.1007/s10686-013-9364-z

    Article  ADS  Google Scholar 

  • Gardner LD, Kohl JL, Daigneau PS, Dennis EF, Fineschi S, Michels J, Nystrom GU, Panasyuk A, Raymond JC, Reisenfeld DJ, Smith PL, Strachan L, Suleiman R, Noci GC, Romoli M, Ciaravella A, Modigliani A, Huber MC, Antonucci E, Benna C, Giordano S, Tondello G, Nicolosi P, Naletto G, Pernechele C, Spadaro D, Siegmund OH, Allegra A, Carosso PA, Jhabvala MD (1996) Stray light, radiometric, and spectral characterization of UVCS/SOHO: laboratory calibration and flight performance. In: Huffman RE, Stergis CG (eds) Ultraviolet atmospheric and space remote sensing: methods and instrumentation, society of photo-optical instrumentation engineers (SPIE) conference series, vol 2831, pp 2–24

  • Gardner LD, Atkins N, Fineschi S, Smith PL, Kohl JL, Maccari L, Romoli M (2000) Efficiency variations of UVCS/SOHO based on laboratory measurements of replica gratings. In: Fineschi S, Korendyke CM, Siegmund OH, Woodgate BE (eds) Instrumentation for UV/EUV astronomy and solar missions, society of photo-optical instrumentation engineers (SPIE) conference series, vol 4139, pp 362–369

  • Gardner LD, Smith PL, Kohl JL, Atkins N, Ciaravella A, Miralles MP, Panasyuk A, Raymond JC, Strachan L Jr, Suleiman RM, Romoli M, Fineschi S (2002) UV radiometric calibration of UVCS. In: Pauluhn A, Huber M, von Steiger R (eds) The radiometric calibration of SOHO, vol 2. ESA, Noordwijk, pp 161–180 (ISSI Scientific Report SR-002)

  • Giacconi R, Kellogg E, Gorenstein P, Gursky H, Tananbaum H (1971) An X-ray scan of the galactic plane from UHURU. ApJ 165:L27–L35. doi:10.1086/180711

    Article  ADS  Google Scholar 

  • Goebel R, Yilmaz S, Köhler R (1996) Stability under vacuum of silicon trap detectors and their use as transfer instruments in cryogenic radiometry. Appl Opt 35:4404–4407. doi:10.1364/AO.35.004404

    Article  ADS  Google Scholar 

  • Golub L, Deluca E, Austin G, Bookbinder J, Caldwell D, Cheimets P, Cirtain J, Cosmo M, Reid P, Sette A, Weber M, Sakao T, Kano R, Shibasaki K, Hara H, Tsuneta S, Kumagai K, Tamura T, Shimojo M, McCracken J, Carpenter J, Haight H, Siler R, Wright E, Tucker J, Rutledge H, Barbera M, Peres G, Varisco S (2007) The X-ray telescope (XRT) for the Hinode mission. Sol Phys 243:63–86. doi:10.1007/s11207-007-0182-1

    Article  ADS  Google Scholar 

  • Gondoin P, Aschenbach BR, Bräuninger H, de Chambure D, Collette JP, Egger R, van Katwijk K, Lumb DH, Peacock AJ, Stockman Y, Tock JP, Willingale R (1996) X-ray performance of a qualification model of an XMM mirror module. In: Siegmund OH, Gummin MA (eds) EUV, X-ray, and gamma-ray instrumentation for astronomy vii, society of photo-optical instrumentation engineers (SPIE) conference series, vol 2808, pp 390–401

  • Gondoin P, Aschenbach BR, Beijersbergen MW, Egger R, Jansen FA, Stockman Y, Tock JP (1998) Calibration of the first XXM flight mirror module: II. Effective area. In: Hoover RB, Walker AB (eds) X-ray optics, instruments, and missions, society of photo-optical instrumentation engineers (SPIE) conference series, vol 3444, pp 290–301

  • Gottwald A, Klein R, Krumrey M, Müller P, Paustian W, Reichel T, Scholze F, Thornagel R (2014) Radiometrische Charakterisierung von Weltrauminstrumentierung. Sonderdruck aus PTB-Mitteilungen 3:4

    Google Scholar 

  • Greenstein JL, Oke JB (1979) Ultraviolet spectrophotometry of degenerate stars. ApJ 229:L141–L144. doi:10.1086/182948

    Article  ADS  Google Scholar 

  • Grewing M, Appenzeller I, Barnstedt J, Bowyer S, Hurwitz M, Krämer G, Kappelmann N, Krautter J, Mandel H (1998) ORFEUS. In: Wamsteker W, Gonzalez Riestra R, Harris B (eds) Ultraviolet astrophysics beyond the IUE final archive, vol 413. ESA Special Publication, p 757

  • Griffin M, Ade P (2013) Narrow-band imaging by use of interferometers. In: Huber M, Pauluhn A, Culhane J, Timothy J, Wilhelm K, Zehnder A (eds) Observing photons in space. Springer, London, pp 333–348

    Chapter  Google Scholar 

  • Güver T, Özel F, Marshall H, Psaltis D, Guainazzi M, Díaz-Trigo M (2015) Systematic uncertainties in the spectroscopic measurements of neutron-star masses and radii from thermonuclear X-ray bursts. III. Absolute flux calibration. ArXiv e-prints

  • Handy BN, Bruner ME, Tarbell TD, Title AM, Wolfson CJ, Laforge MJ, Oliver JJ (1998) UV observations with the transition region and coronal explorer. Sol Phys 183:29–43. doi:10.1023/A:1005079622620

    Article  ADS  Google Scholar 

  • Handy BN, Acton LW, Kankelborg CC, Wolfson CJ, Akin DJ, Bruner ME, Caravalho R, Catura RC, Chevalier R, Duncan DW, Edwards CG, Feinstein CN, Freeland SL, Friedlaender FM, Hoffmann CH, Hurlburt NE, Jurcevich BK, Katz NL, Kelly GA, Lemen JR, Levay M, Lindgren RW, Mathur DP, Meyer SB, Morrison SJ, Morrison MD, Nightingale RW, Pope TP, Rehse RA, Schrijver CJ, Shine RA, Shing L, Strong KT, Tarbell TD, Title AM, Torgerson DD, Golub L, Bookbinder JA, Caldwell D, Cheimets PN, Davis WN, Deluca EE, McMullen RA, Warren HP, Amato D, Fisher R, Maldonado H, Parkinson C (1999) The transition region and coronal explorer. Sol Phys 187:229–260. doi:10.1023/A:1005166902804

    Article  ADS  Google Scholar 

  • Harrison FA, Craig WW, Christensen FE, Hailey CJ, Zhang WW, Boggs SE, Stern D, Cook WR, Forster K, Giommi P, Grefenstette BW, Kim Y, Kitaguchi T, Koglin JE, Madsen KK, Mao PH, Miyasaka H, Mori K, Perri M, Pivovaroff MJ, Puccetti S, Rana VR, Westergaard NJ, Willis J, Zoglauer A, An H, Bachetti M, Barrière NM, Bellm EC, Bhalerao V, Brejnholt NF, Fuerst F, Liebe CC, Markwardt CB, Nynka M, Vogel JK, Walton DJ, Wik DR, Alexander DM, Cominsky LR, Hornschemeier AE, Hornstrup A, Kaspi VM, Madejski GM, Matt G, Molendi S, Smith DM, Tomsick JA, Ajello M, Ballantyne DR, Baloković M, Barret D, Bauer FE, Blandford RD, Brandt WN, Brenneman LW, Chiang J, Chakrabarty D, Chenevez J, Comastri A, Dufour F, Elvis M, Fabian AC, Farrah D, Fryer CL, Gotthelf EV, Grindlay JE, Helfand DJ, Krivonos R, Meier DL, Miller JM, Natalucci L, Ogle P, Ofek EO, Ptak A, Reynolds SP, Rigby JR, Tagliaferri G, Thorsett SE, Treister E, Urry CM (2013) The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission. ApJ 770:103. doi:10.1088/0004-637X/770/2/103

    Article  ADS  Google Scholar 

  • Harrison RA, Sawyer EC, Carter MK, Cruise AM, Cutler RM, Fludra A, Hayes RW, Kent BJ, Lang J, Parker DJ, Payne J, Pike CD, Peskett SC, Richards AG, Gulhane JL, Norman K, Breeveld AA, Breeveld ER, Al Janabi KF, McCalden AJ, Parkinson JH, Self DG, Thomas PD, Poland AI, Thomas RJ, Thompson WT, Kjeldseth-Moe O, Brekke P, Karud J, Maltby P, Aschenbach B, Bräuninger H, Kühne M, Hollandt J, Siegmund OHW, Huber MCE, Gabriel AH, Mason HE, Bromage BJI (1995) The coronal diagnostic spectrometer for the solar and heliospheric observatory. Sol Phys 162:233–290. doi:10.1007/BF00733431

    Article  ADS  Google Scholar 

  • Harrison RA, Kent BJ, Sawyer EC, Hollandt J, Kuhne M, Paustian W, Wende B, Huber MCE (1996) The coronal diagnostic spectrometer for the solar and heliospheric observatory: experiment description and calibration. Metrologia 32:647–652

    Article  ADS  Google Scholar 

  • Hartmann J (2009) High-temperature measurement techniques for the application in photometry, radiometry and thermometry. Phys Rep 469:205–269

    Article  ADS  Google Scholar 

  • Hayes DS (1985) Stellar absolute fluxes and energy distributions from 0.32 to 4.0 microns. In: Hayes DS, Pasinetti LE, Philip AGD (eds) Calibration of fundamental stellar quantities, IAU symposium, vol 111, pp 225–249

  • Hayes DS, Latham DW (1975) A rediscussion of the atmospheric extinction and the absolute spectral-energy distribution of VEGA. ApJ 197:593–601. doi:10.1086/153548

    Article  ADS  Google Scholar 

  • Heise C, Kling R, Kock M, Hollandt J, Kühne M (1994) Radiometric characterization of a Penning discharge in the vacuum ultraviolet. Appl Opt 33:5111–5117. doi:10.1364/AO.33.005111

    Article  ADS  Google Scholar 

  • Henry RC, Weinstein A, Feldman PD, Fastie WG, Moos HW (1975) Low-resolution ultraviolet spectroscopy of several hot stars observed from Apollo 17. ApJ 201:613–623. doi:10.1086/153928

    Article  ADS  Google Scholar 

  • Hinteregger HE, Hall LA (1969) Solar extreme ultraviolet emissions in the range 260–1300 Å observed from OSO-III. Sol Phys 6:175–182. doi:10.1007/BF00150942

    Article  ADS  Google Scholar 

  • Hock RA, Chamberlin PC, Woods TN, Crotser D, Eparvier FG, Woodraska DL, Woods EC (2012) Extreme ultraviolet variability experiment (EVE) multiple EUV grating spectrographs (MEGS): radiometric calibrations and results. Sol Phys 275:145–178. doi:10.1007/s11207-010-9520-9

    Article  ADS  Google Scholar 

  • Holberg JB, Basile J, Wesemael F (1986) DA white dwarf effective temperatures determined from IUE Lyman-alpha profiles. ApJ 306:629–641. doi:10.1086/164372

    Article  ADS  Google Scholar 

  • Holberg JB, Ali B, Carone TE, Polidan RS (1991) Absolute far-ultraviolet spectrophotometry of hot subluminous stars from Voyager. ApJ 375:716–721. doi:10.1086/170237

    Article  ADS  Google Scholar 

  • Hollandt J, Kühne M, Wende B (1994) High-current hollow-cathode source as a radiant intensity standard in the 40–125-nm wavelength range. Appl Opt 33:68–74

    Article  ADS  Google Scholar 

  • Hollandt J, Kuehne M, Huber MCE, Wende B (1996) Source standards for the radiometric calibration of astronomical telescopes in the VUV spectral range. A&AS 115:561–572

    ADS  Google Scholar 

  • Hollandt J, Seidel J, Klein R, Ulm G, Migdall A, Ware M (2005) Primary sources for use in radiometry. Opt Radiom Ser Exp Methods Phys Sci 41:213–290. doi:10.1016/S1079-4042(05)41005-X

    Article  Google Scholar 

  • Hovestadt D, Hilchenbach M, Bürgi A, Klecker B, Laeverenz P, Scholer M, Grünwaldt H, Axford WI, Livi S, Marsch E, Wilken B, Winterhoff HP, Ipavich FM, Bedini P, Coplan MA, Galvin AB, Gloeckler G, Bochsler P, Balsiger H, Fischer J, Geiss J, Kallenbach R, Wurz P, Reiche KU, Gliem F, Judge DL, Ogawa HS, Hsieh KC, Möbius E, Lee MA, Managadze GG, Verigin MI, Neugebauer M (1995) CELIAS—charge, element and isotope analysis system for SOHO. Sol Phys 162:441–481. doi:10.1007/BF00733436

    Article  ADS  Google Scholar 

  • Howard RA, Moses JD, Vourlidas A, Newmark JS, Socker DG, Plunkett SP, Korendyke CM, Cook JW, Hurley A, Davila JM, Thompson WT, St Cyr OC, Mentzell E, Mehalick K, Lemen JR, Wuelser JP, Duncan DW, Tarbell TD, Wolfson CJ, Moore A, Harrison RA, Waltham NR, Lang J, Davis CJ, Eyles CJ, Mapson-Menard H, Simnett GM, Halain JP, Defise JM, Mazy E, Rochus P, Mercier R, Ravet MF, Delmotte F, Auchere F, Delaboudiniere JP, Bothmer V, Deutsch W, Wang D, Rich N, Cooper S, Stephens V, Maahs G, Baugh R, McMullin D, Carter T (2008) Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci Rev 136:67–115. doi:10.1007/s11214-008-9341-4

    Article  ADS  Google Scholar 

  • Hoyt CC, Foukal PV (1991) Cryogenic radiometers and their application to metrology. Metrologia 28(28):163–167

    Article  ADS  Google Scholar 

  • Huber MCE, Dupree AK, Goldberg L, Noyes RW, Parkinson WH, Reeves EM, Withbroe GL (1973) The harvard experiment on OSO-6: instrumentation, calibration, operation, and description of observations. ApJ 183:291–312. doi:10.1086/152227

    Article  ADS  Google Scholar 

  • Huber MCE, Reeves EM, Timothy JG (1974) Photometric calibration of an extreme-ultraviolet spectroheliometer for the skylab mission. In: Thompson BJ, Shannon RR (eds) Space optics, p 33

  • Huber MCE, Pauluhn A, Culhane JL, Timothy JG, Wilhelm K, Zehnder A (2013) Observing photons in space: a guide to experimental astronomy, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Humphries CM, Jamar C, Malaise D, Wroe H (1976) Absolute calibration of the ultraviolet sky survey telescope in satellite TD 1. A&A 49:389–406

    ADS  Google Scholar 

  • Hurwitz M, Bowyer S, Bristol R, Van Dyke Dixon W, Dupuis J, Edelstein J, Jelinsky P, Sasseen TP, Siegmund O (1998) Far-ultraviolet performance of the Berkeley spectrograph during the ORFEUS-SPAS II mission. ApJ 500:L1–L7. doi:10.1086/311388

    Article  ADS  Google Scholar 

  • Jansen F, Lumb D, Altieri B, Clavel J, Ehle M, Erd C, Gabriel C, Guainazzi M, Gondoin P, Much R, Munoz R, Santos M, Schartel N, Texier D, Vacanti G (2001) XMM-Newton observatory. I. The spacecraft and operations. A&A 365:L1–L6. doi:10.1051/0004-6361:20000036

    Article  ADS  Google Scholar 

  • Kaase H, Bischoff K, Metzdorf J (1984) Quantitative Spektralradiometrie auf der Basis eines Schwarzen Strahlers hoher Temperatur und großer Strahlerfläche. Licht-Forschung 6:29–34

    Google Scholar 

  • Kaiser ME, Kruk JW, McCandliss SR, Sahnow DJ, Rauscher BJ, Benford DJ, Bohlin RC, Deustua SE, Dixon WV, Feldman PD, Gardner JP, Kimble RA, Kurucz R, Lampton M, Moos HW, Perlmutter S, Riess AG, Woodgate BE, Wright EL (2008a) ACCESS: absolute color calibration experiment for standard stars. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 7014, p 5. doi:10.1117/12.790106

  • Kaiser ME, Morris MJ, Peacock GO, McCandliss SR, Rauscher BJ, Kimble RA, Kruk JW, Pelton R, Wright EL, Mott DB, Wen Y, Feldman PD, Moos HW, Riess AG, Gardner JP, Benford DJ, Woodgate BE, Bohlin R, Deustua SE, Dixon WV, Sahnow DJ, Kurucz R, Lampton M, Perlmutter S (2014) ACCESS: status and pre-flight performance. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 9143, p 4. doi:10.1117/12.2057689

  • Kaiser ML, Kucera TA, Davila JM, St Cyr OC, Guhathakurta M, Christian E (2008b) The STEREO mission: an introduction. Space Sci Rev 136:5–16. doi:10.1007/s11214-007-9277-0

    Article  ADS  Google Scholar 

  • Kanbach G, Schönfelder V, Zehnder A (2013) High-energy astrophysics—energies above 100 keV. In: Huber M, Pauluhn A, Culhane J, Timothy J, Wilhelm K, Zehnder A (eds) Observing photons in space. Springer, London, pp 55–72

    Chapter  Google Scholar 

  • Kano R, Sakao T, Hara H, Tsuneta S, Matsuzaki K, Kumagai K, Shimojo M, Minesugi K, Shibasaki K, Deluca EE, Golub L, Bookbinder J, Caldwell D, Cheimets P, Cirtain J, Dennis E, Kent T, Weber M (2008) The Hinode X-ray telescope (XRT): camera design, performance and operations. Sol Phys 249:263–279. doi:10.1007/s11207-007-9058-7

    Article  ADS  Google Scholar 

  • Kellogg EM, Cohen LM, Edgar RJ, Evans IN, Freeman MD, Gaetz TJ, Jerius D, McDermott WC, McKinnon PJ, Murray SS, Podgorski WA, Schwartz DA, van Speybroeck LP, Wargelin BJ, Zombeck MV, Weisskopf MC, Elsner RF, O’dell SL, Tennant AF, Kolodziejczak JJ, Garmire GP, Nousek JA, Kraft S, Scholze F, Thornagel R, Ulm G, Flanagan KA, Dewey D, Bautz MW, Texter SC, Arenberg JW, Carlson R (1997) Absolute calibration of the AXAF telescope effective area. In: Hoover RB, Walker AB (eds) Grazing incidence and multilayer X-ray optical systems, society of photo-optical instrumentation engineers (SPIE) conference series, vol 3113, pp 515–525

  • Kent S, Kaiser MB, Deustua SE, Smith JA, Adelman S, Allam S, Baptista B, Bohlin RC, Clem JL, Conley A, Edelstein J, Elias J, Glass I, Henden A, Howell S, Kimble RA, Kruk JW, Lampton M, Magnier EA, McCandliss SR, Moos W, Mostek N, Mufson S, Oswalt TD, Perlmutter S, Allende Prieto C, Rauscher BJ, Riess A, Saha A, Sullivan M, Suntzeff N, Tokunaga A, Tucker D, Wing R, Woodgate B, Wright EL (2009) Photometric calibrations for 21st century science. In: astro2010: the astronomy and astrophysics decadal survey, astronomy, vol 2010, p 155

  • Kessler MF, Steinz JA, Anderegg ME, Clavel J, Drechsel G, Estaria P, Faelker J, Riedinger JR, Robson A, Taylor BG, Ximénez de Ferrán S (1996) The Infrared Space Observatory (ISO) mission. A&A 315:L27–L31

    ADS  Google Scholar 

  • Kim SS, Roh HS, Cho KS, Shin J (2006) Calibration of TRACE Lyman-\(\alpha \) images using SOHO/SUMER observations. A&A 456:747–750. doi:10.1051/0004-6361:20054714

    Article  ADS  Google Scholar 

  • Klein R, Brandt G, Fliegauf R, Hoehl A, Müller R, Thornagel R, Ulm G (2009) The Metrology Light Source operated as a primary source standard. Metrologia 46:266. doi:10.1088/0026-1394/46/4/S25

    Article  ADS  Google Scholar 

  • Klose JZ, Bridges JM, Ott WR (1988) Radiometric calibrations of portable sources in the vacuum ultraviolet. J Res 93:21–39

    ADS  Google Scholar 

  • Kohl JL, Esser R, Gardner LD, Habbal S, Daigneau PS, Dennis EF, Nystrom GU, Panasyuk A, Raymond JC, Smith PL, Strachan L, van Ballegooijen AA, Noci G, Fineschi S, Romoli M, Ciaravella A, Modigliani A, Huber MCE, Antonucci E, Benna C, Giordano S, Tondello G, Nicolosi P, Naletto G, Pernechele C, Spadaro D, Poletto G, Livi S, von der Lühe O, Geiss J, Timothy JG, Gloeckler G, Allegra A, Basile G, Brusa R, Wood B, Siegmund OHW, Fowler W, Fisher R, Jhabvala M (1995) The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. Sol Phys 162:313–356. doi:10.1007/BF00733433

    Article  ADS  Google Scholar 

  • Kopp G, Heuerman K, Lawrence G (2005) The total irradiance monitor (TIM): instrument calibration. Sol Phys 230:111–127. doi:10.1007/s11207-005-7447-3

    Article  ADS  Google Scholar 

  • Kruk JW, Kimble RA, Buss RH Jr, Davidsen AF, Durrance ST, Finley DS, Holberg JB, Kriss GA (1997) Final Astro-1 calibration of the Hopkins Ultraviolet Telescope: a test of white dwarf model atmospheres as far-ultraviolet calibration standards. ApJ 482:546–568

    Article  ADS  Google Scholar 

  • Kruk JW, Brown TM, Davidsen AF, Espey BR, Finley DS, Kriss GA (1999) Final Astro-2 calibration of the Hopkins Ultraviolet Telescope. ApJS 122:299–329. doi:10.1086/313217

    Article  ADS  Google Scholar 

  • Kurucz RL (1979) Model atmospheres for G, F, A, B, and O stars. ApJS 40:1–340. doi:10.1086/190589

    Article  ADS  Google Scholar 

  • Kurucz RL (1993) VizieR online data catalog: model atmospheres (Kurucz, 1979). VizieR online data catalog 6039:0

  • Kurucz RL (2013) ATLAS12: opacity sampling model atmosphere program. Astrophysics Source Code Library

  • Kuschnerus P, Rabus H, Richter M, Scholze F, Werner L, Ulm G (1998) Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range. Metrologia 35:355. doi:10.1088/0026-1394/35/4/23

    Article  ADS  Google Scholar 

  • Lamarre JM, Dole H (2013) The cosmic microwave background. In: Huber M, Pauluhn A, Culhane J, Timothy J, Wilhelm K, Zehnder A (eds) Observing photons in space. Springer, London, pp 165–182

    Chapter  Google Scholar 

  • Lang J, Brown CM, Magraw JE, Payne J (1993) The laboratory calibration of the Yohkoh Bragg crystal spectrometer. Tech. rep., Rutherford Appleton Laboratory, rAL-93-035

  • Lang J, Kent BJ, Breeveld AA, Breeveld ER, Bromage BJI, Hollandt J, Payne J, Pike CD, Thompson WT (2000) The laboratory calibration of the SOHO Coronal Diagnostic Spectrometer. J Opt A Pure Appl Opt 2:88–106. doi:10.1088/1464-4258/2/2/305

    Article  ADS  Google Scholar 

  • Lang J, Kent BJ, Paustian W, Brown CM, Keyser C, Anderson MR, Case GCR, Chaudry RA, James AM, Korendyke CM, Pike CD, Probyn BJ, Rippington DJ, Seely JF, Tandy JA, Whillock MCR (2006) Laboratory calibration of the Extreme-Ultraviolet Imaging Spectrometer for the Solar-B satellite. Appl Opt 45:8689–8705. doi:10.1364/AO.45.008689

    Article  ADS  Google Scholar 

  • Laureijs R, Gondoin P, Duvet L, Saavedra Criado G, Hoar J, Amiaux J, Auguères JL, Cole R, Cropper M, Ealet A, Ferruit P, Escudero Sanz I, Jahnke K, Kohley R, Maciaszek T, Mellier Y, Oosterbroek T, Pasian F, Sauvage M, Scaramella R, Sirianni M, Valenziano L (2012) Euclid: ESA’s mission to map the geometry of the dark universe. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 8442. doi:10.1117/12.926496

  • Lawrence GM, Harder JW, Rottman GJ, Woods TN, Richardson J, Mount G (1998) Stability considerations for a solar spectral intensity monitor (SIM). In: Chen PT, McClintock WE, Rottman GJ (eds) Optical systems contamination and degradation, society of photo-optical instrumentation engineers (SPIE) conference series, vol 3427, pp 477–485. doi:10.1117/12.328519

  • Lemaire P (2002) Stellar observations. In: Pauluhn A, Huber M, von Steiger R (eds) The radiometric calibration of SOHO, vol 2. ESA, Noordwijk, pp 265–279 (ISSI Scientific Report SR-002)

  • Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, Drake JF, Duncan DW, Edwards CG, Friedlaender FM, Heyman GF, Hurlburt NE, Katz NL, Kushner GD, Levay M, Lindgren RW, Mathur DP, McFeaters EL, Mitchell S, Rehse RA, Schrijver CJ, Springer LA, Stern RA, Tarbell TD, Wuelser JP, Wolfson CJ, Yanari C, Bookbinder JA, Cheimets PN, Caldwell D, Deluca EE, Gates R, Golub L, Park S, Podgorski WA, Bush RI, Scherrer PH, Gummin MA, Smith P, Auker G, Jerram P, Pool P, Soufli R, Windt DL, Beardsley S, Clapp M, Lang J, Waltham N (2012) The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys 275:17–40. doi:10.1007/s11207-011-9776-8

    Article  ADS  Google Scholar 

  • Lin RP, Dennis BR, Hurford GJ, Smith DM, Zehnder A, Harvey PR, Curtis DW, Pankow D, Turin P, Bester M, Csillaghy A, Lewis M, Madden N, van Beek HF, Appleby M, Raudorf T, McTiernan J, Ramaty R, Schmahl E, Schwartz R, Krucker S, Abiad R, Quinn T, Berg P, Hashii M, Sterling R, Jackson R, Pratt R, Campbell RD, Malone D, Landis D, Barrington-Leigh CP, Slassi-Sennou S, Cork C, Clark D, Amato D, Orwig L, Boyle R, Banks IS, Shirey K, Tolbert AK, Zarro D, Snow F, Thomsen K, Henneck R, McHedlishvili A, Ming P, Fivian M, Jordan J, Wanner R, Crubb J, Preble J, Matranga M, Benz A, Hudson H, Canfield RC, Holman GD, Crannell C, Kosugi T, Emslie AG, Vilmer N, Brown JC, Johns-Krull C, Aschwanden M, Metcalf T, Conway A (2002) The Reuven Ramaty high-energy solar spectroscopic imager (RHESSI). Sol Phys 210:3–32. doi:10.1023/A:1022428818870

    Article  ADS  Google Scholar 

  • Lindegren L, Babusiaux C, Bailer-Jones C, Bastian U, Brown AGA, Cropper M, Høg E, Jordi C, Katz D, van Leeuwen F, Luri X, Mignard F, de Bruijne JHJ, Prusti T (2008) The Gaia mission: science, organization and present status. In: Jin WJ, Platais I, Perryman MAC (eds) IAU symposium, vol 248, pp 217–223. doi:10.1017/S1743921308019133

  • Llebaria A, Lamy PL, Bout MV (2004) Lessons learned from the SOHO/LASCO-C2 calibration. In: Fineschi S, Gummin MA (eds) Telescopes and instrumentation for solar astrophysics, society of photo-optical instrumentation engineers (spie) conference series, vol 5171, pp 26–37. doi:10.1117/12.506159

  • Lockwood GW, Tüg H, White NM (1992) A new solar irradiance calibration from 3295 A to 8500 A derived from absolute spectrophotometry of VEGA. ApJ 390:668–678. doi:10.1086/171318

    Article  ADS  Google Scholar 

  • Madden R, Canfield LR, Furst M, Hamilton A, Hughey L (1992) SURF-II: characteristics, facilities, and plans. Rev Sci Instrum 63:1594–1595

    Article  ADS  Google Scholar 

  • Madsen KK, Harrison FA, An H, Boggs SE, Christensen FE, Cook R, Craig WW, Forster K, Fuerst F, Grefenstette B, Hailey CJ, Kitaguchi T, Markwardt C, Mao P, Miyasaka H, Rana VR, Stern DK, Zhang WW, Zoglauer A, Walton D, Westergaard NJ (2014) The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 9144, p 1. doi:10.1117/12.2056643

  • Mather JC, Fixsen DJ, Shafer RA, Mosier C, Wilkinson DT (1999) Calibrator design for the COBE far-infrared absolute spectrophotometer (FIRAS). ApJ 512:511–520. doi:10.1086/306805

    Article  ADS  Google Scholar 

  • McClintock WE, Rottman GJ, Woods TN (2005a) Solar-stellar irradiance comparison experiment II (SOLSTICE II): instrument concept and design. Sol Phys 230:225–258. doi:10.1007/s11207-005-7432-x

    Article  ADS  Google Scholar 

  • McClintock WE, Snow M, Woods TN (2005b) Solar-stellar irradiance comparison experiment II (SOLSTICE II): pre-launch and on-orbit calibrations. Sol Phys 230:259–294. doi:10.1007/s11207-005-1585-5

    Article  ADS  Google Scholar 

  • McGraw JT, Zimmer PC, Zirzow DC, Woodward JT, Lykke KR, Cramer CE, Deustua SE, Hines DC (2012) Near-field calibration of an objective spectrophotometer to NIST radiometric standards for the creation and maintenance of standard stars for ground- and space-based applications. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 8450, p 11. doi:10.1117/12.927296

  • McMullin DR, Judge DL, Hilchenbach M, Ipavich F, Bochsler P, Wurz P, Burgi A, Thompson WT, Newmark JS (2002) In-flight comparisons of Solar EUV irradiance measurements provided by the CELIAS/SEM on SOHO. ISSI Sci Rep Ser 2:135–144

    ADS  Google Scholar 

  • Mégessier C (1995) Accuracy of the astrophysical absolute flux calibrations: visible and near-infrared. A&A 296:771–778

    ADS  Google Scholar 

  • Mekaoui S, Dewitte S, Conscience C, Chevalier A (2010) Total solar irradiance absolute level from DIARAD/SOVIM on the International Space Station. Adv Space Res 45:1393–1406. doi:10.1016/j.asr.2010.02.014

    Article  ADS  Google Scholar 

  • Mironov A, Zakharov A, Ambartsumyan A (2007) Improved photometric accuracy and the creation of an all-sky high-accuracy stellar standard system. In: Sterken C (ed) The future of photometric, spectrophotometric and polarimetric standardization, astronomical society of the pacific conference series, vol 364, pp 77–80

  • Morrill JS, Korendyke CM, Brueckner GE, Giovane F, Howard RA, Koomen M, Moses D, Plunkett SP, Vourlidas A, Esfandiari E, Rich N, Wang D, Thernisien AF, Lamy P, Llebaria A, Biesecker D, Michels D, Gong Q, Andrews M (2006) Calibration of the Soho/Lasco C3 white light coronagraph. Sol Phys 233:331–372. doi:10.1007/s11207-006-2058-1

    Article  ADS  Google Scholar 

  • Möstl K (1991) Radiometry. In: Bortfeldt J, Kramer B (eds) Landolt-Börnstein (new series), units and fundamental constants in physics and chemistry, vol A. Springer, Berlin, pp 2-348–2-362

  • Mountain CM, Selby MJ, Leggett SK, Blackwell DE, Petford AD (1985) Measurement of the absolute flux from VEGA at 4.92 microns. A&A 151:399–402

    ADS  Google Scholar 

  • Mozurkewich D, Armstrong JT, Hindsley RB, Quirrenbach A, Hummel CA, Hutter DJ, Johnston KJ, Hajian AR, Elias NM II, Buscher DF, Simon RS (2003) Angular diameters of stars from the Mark III optical interferometer. AJ 126:2502–2520. doi:10.1086/378596

    Article  ADS  Google Scholar 

  • Müller T, Balog Z, Nielbock M, Lim T, Teyssier D, Olberg M, Klaas U, Linz H, Altieri B, Pearson C, Bendo G, Vilenius E (2014) Herschel celestial calibration sources. Four large main-belt asteroids as prime flux calibrators for the far-IR/sub-mm range. Exp Astron 37:253–330. doi:10.1007/s10686-013-9357-y

    Article  ADS  Google Scholar 

  • Murakami H, Baba H, Barthel P, Clements DL, Cohen M, Doi Y, Enya K, Figueredo E, Fujishiro N, Fujiwara H, Fujiwara M, Garcia-Lario P, Goto T, Hasegawa S, Hibi Y, Hirao T, Hiromoto N, Hong SS, Imai K, Ishigaki M, Ishiguro M, Ishihara D, Ita Y, Jeong WS, Jeong KS, Kaneda H, Kataza H, Kawada M, Kawai T, Kawamura A, Kessler MF, Kester D, Kii T, Kim DC, Kim W, Kobayashi H, Koo BC, Kwon SM, Lee HM, Lorente R, Makiuti S, Matsuhara H, Matsumoto T, Matsuo H, Matsuura S, Müller TG, Murakami N, Nagata H, Nakagawa T, Naoi T, Narita M, Noda M, Oh SH, Ohnishi A, Ohyama Y, Okada Y, Okuda H, Oliver S, Onaka T, Ootsubo T, Oyabu S, Pak S, Park YS, Pearson CP, Rowan-Robinson M, Saito T, Sakon I, Salama A, Sato S, Savage RS, Serjeant S, Shibai H, Shirahata M, Sohn J, Suzuki T, Takagi T, Takahashi H, Tanabé T, Takeuchi TT, Takita S, Thomson M, Uemizu K, Ueno M, Usui F, Verdugo E, Wada T, Wang L, Watabe T, Watarai H, White GJ, Yamamura I, Yamauchi C, Yasuda A (2007) The infrared astronomical mission AKARI. PASJ 59:369. doi:10.1093/pasj/59.sp2.S369

    ADS  Google Scholar 

  • Murakami N, Kawada M, Ootsubo T, Okada Y, Takahashi H, Yasuda A, Kaneda H, Matsuo H, Baluteau JP, Davis-Imhof P, Gom BG, Naylor DA, Zavagno A, Yamamura I, Matsuura S, Shirahata M, Doi Y, Nakagawa T, Shibai H (2010) Calibration of the AKARI far-infrared imaging Fourier-transform spectrometer. PASJ 62:1155–1166. doi:10.1093/pasj/62.5.1155

    ADS  Google Scholar 

  • Murray SS, Austin GK, Chappell JH, Gomes JJ, Kenter AT, Kraft RP, Meehan GR, Zombeck MV, Fraser GW, Serio S (2000) In-flight performance of the Chandra high-resolution camera. In: Truemper JE, Aschenbach B (eds) X-ray optics, instruments, and missions III, society of photo-optical instrumentation engineers (SPIE) conference series, vol 4012, pp 68–80

  • Naylor DA, Baluteau JP, Bendo GJ, Benielli D, Fulton TR, Gom BG, Griffin MJ, Hopwood R, Imhof P, Lim TL, Lu N, Makiwa G, Marchili N, Orton GS, Papageorgiou A, Pearson C, Polehampton ET, Schulz B, Spencer LD, Swinyard BM, Valtchanov I, van der Wiel MHD, Veenendaal IT, Wu R (2014) In-orbit performance of the Herschel/SPIRE imaging Fourier transform spectrometer: lessons learned. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 9143, p 15. doi:10.1117/12.2054989

  • Neckel H, Labs D (1984) The solar radiation between 3300 and 12500 A. Sol Phys 90:205–258. doi:10.1007/BF00173953

    Article  ADS  Google Scholar 

  • Neugebauer G, Habing HJ, van Duinen R, Aumann HH, Baud B, Beichman CA, Beintema DA, Boggess N, Clegg PE, de Jong T, Emerson JP, Gautier TN, Gillett FC, Harris S, Hauser MG, Houck JR, Jennings RE, Low FJ, Marsden PL, Miley G, Olnon FM, Pottasch SR, Raimond E, Rowan-Robinson M, Soifer BT, Walker RG, Wesselius PR, Young E (1984) The infrared astronomical satellite (IRAS) mission. ApJ 278:L1–L6. doi:10.1086/184209

    Article  ADS  Google Scholar 

  • Neupert WM, White WA, Gates WJ, Swartz M, Young RM (1969) X-ray and extreme ultraviolet (1400 Å) spectroscopy of the sun, from OSO-III. Sol Phys 6:183–192. doi:10.1007/BF00150943

    Article  ADS  Google Scholar 

  • Nielbock M, Müller T, Klaas U, Altieri B, Balog Z, Billot N, Linz H, Okumura K, Sánchez-Portal M, Sauvage M (2013) The Herschel PACS photometer calibration. A time dependent flux calibration for the PACS chopped point-source photometry AOT mode. Exp Astron 36:631–660. doi:10.1007/s10686-013-9348-z

    Article  ADS  Google Scholar 

  • Ogawara Y, Takano T, Kato T, Kosugi T, Tsuneta S, Watanabe T, Kondo I, Uchida Y (1991) The SOLAR-A mission—an overview. Sol Phys 136:1–16. doi:10.1007/BF00151692

    Article  ADS  Google Scholar 

  • Oke JB (1990) Faint spectrophotometric standard stars. AJ 99:1621–1631. doi:10.1086/115444

    Article  ADS  Google Scholar 

  • Oke JB, Gunn JE (1983) Secondary standard stars for absolute spectrophotometry. ApJ 266:713–717. doi:10.1086/160817

    Article  ADS  Google Scholar 

  • Oke JB, Schild RE (1970) The absolute spectral energy distribution of Alpha Lyrae. ApJ 161:1015. doi:10.1086/150603

    Article  ADS  Google Scholar 

  • Pajot F, Ade PAR, Beney JL, Bréelle E, Broszkiewicz D, Camus P, Carabétian C, Catalano A, Chardin A, Charra M, Charra J, Cizeron R, Couchot F, Coulais A, Crill BP, Dassas K, Daubin J, de Bernardis P, de Marcillac P, Delouis JM, Désert FX, Duret P, Eng P, Evesque C, Fourmond JJ, François S, Giard M, Giraud-Héraud Y, Guglielmi L, Guyot G, Haissinski J, Henrot-Versillé S, Hervier V, Holmes W, Jones WC, Lamarre JM, Lami P, Lange AE, Lefebvre M, Leriche B, Leroy C, Macias-Perez J, Maciaszek T, Maffei B, Mahendran A, Mansoux B, Marty C, Masi S, Mercier C, Miville-Deschenes MA, Montier L, Nicolas C, Noviello F, Perdereau O, Piacentini F, Piat M, Plaszczynski S, Pointecouteau E, Pons R, Ponthieu N, Puget JL, Rambaud D, Renault C, Renault JC, Rioux C, Ristorcelli I, Rosset C, Savini G, Sudiwala R, Torre JP, Tristram M, Vallée D, Veneziani M, Yvon D (2010) Planck pre-launch status: HFI ground calibration. A&A 520:A10. doi:10.1051/0004-6361/200913203

    Article  ADS  Google Scholar 

  • Pancino E, Altavilla G, Marinoni S, Cocozza G, Carrasco JM, Bellazzini M, Bragaglia A, Federici L, Rossetti E, Cacciari C, Balaguer Núñez L, Castro A, Figueras F, Fusi Pecci F, Galleti S, Gebran M, Jordi C, Lardo C, Masana E, Monguió M, Montegriffo P, Ragaini S, Schuster W, Trager S, Vilardell F, Voss H (2012) The Gaia spectrophotometric standard stars survey-I. Preliminary results. MNRAS 426:1767–1781. doi:10.1111/j.1365-2966.2012.21766.x

    Article  ADS  Google Scholar 

  • Parmar AN, Martin DDE, Bavdaz M, Favata F, Kuulkers E, Vacanti G, Lammers U, Peacock A, Taylor BG (1997) The low-energy concentrator spectrometer on-board the BeppoSAX X-ray astronomy satellite. A&AS 122:309–326. doi:10.1051/aas:1997137

    Article  ADS  Google Scholar 

  • Pauluhn A, Rüedi I, Solanki SK, Lang J, Pike CD, Schühle U, Thompson WT, Hollandt J, Huber MCE (1999) Intercalibration of SUMER and CDS on SOHO. I. SUMER detector A and CDS NIS. Appl Opt 38:7035–7046. doi:10.1364/AO.38.007035

    Article  ADS  Google Scholar 

  • Pauluhn A, Rüedi I, Solanki SK, Schühle U, Wilhelm K, Lang J, Thompson WT, Hollandt J (2001) Intercalibration of SUMER and CDS on SOHO. II. SUMER detectors A and B and CDS NIS. Appl Opt 40:6292–6300. doi:10.1364/AO.40.006292

    Article  ADS  Google Scholar 

  • Pauluhn A, Huber MCE, von Steiger R (2002) The radiometric calibration of SOHO. In: ISSI scientific reports series 2

  • Pauluhn A, Lang J, Breeveld ER, Solanki SK, Schühle U (2003) Intercalibration of SUMER and CDS on SOHO. III. SUMER and CDS-GIS. Appl Opt 42:657–666. doi:10.1364/AO.42.000657

    Article  ADS  Google Scholar 

  • Penzias AA, Wilson RW (1966) Determination of the microwave spectrum of galactic radiation. ApJ 146:666. doi:10.1086/148944

    Article  ADS  Google Scholar 

  • Pesnell WD, Thompson BJ, Chamberlin PC (2012) The Solar Dynamics Observatory (SDO). Sol Phys 275:3–15. doi:10.1007/s11207-011-9841-3

    Article  ADS  Google Scholar 

  • Peterson DM, Hummel CA, Pauls TA, Armstrong JT, Benson JA, Gilbreath GC, Hindsley RB, Hutter DJ, Johnston KJ, Mozurkewich D, Schmitt HR (2006) Vega is a rapidly rotating star. Nature 440:896–899. doi:10.1038/nature04661

    Article  ADS  Google Scholar 

  • Pilbratt GL (2008) Herschel mission overview and key programmes. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 7010, p 12. doi:10.1117/12.789431

  • Planck Collaboration, Adam R, Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB et al (2015a) Planck 2015 results. VIII. High frequency instrument data processing: calibration and maps, p 26. ArXiv e-prints

  • Planck Collaboration, Ade PAR, Aghanim N, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaglia P et al (2015b) Planck 2015 results. V. LFI calibration, p 22. ArXiv e-prints

  • Poglitsch A, Waelkens C, Geis N, Feuchtgruber H, Vandenbussche B, Rodriguez L, Krause O, Renotte E, van Hoof C, Saraceno P, Cepa J, Kerschbaum F, Agnèse P, Ali B, Altieri B, Andreani P, Augueres JL, Balog Z, Barl L, Bauer OH, Belbachir N, Benedettini M, Billot N, Boulade O, Bischof H, Blommaert J, Callut E, Cara C, Cerulli R, Cesarsky D, Contursi A, Creten Y, De Meester W, Doublier V, Doumayrou E, Duband L, Exter K, Genzel R, Gillis JM, Grözinger U, Henning T, Herreros J, Huygen R, Inguscio M, Jakob G, Jamar C, Jean C, de Jong J, Katterloher R, Kiss C, Klaas U, Lemke D, Lutz D, Madden S, Marquet B, Martignac J, Mazy A, Merken P, Montfort F, Morbidelli L, Müller T, Nielbock M, Okumura K, Orfei R, Ottensamer R, Pezzuto S, Popesso P, Putzeys J, Regibo S, Reveret V, Royer P, Sauvage M, Schreiber J, Stegmaier J, Schmitt D, Schubert J, Sturm E, Thiel M, Tofani G, Vavrek R, Wetzstein M, Wieprecht E, Wiezorrek E (2010) The photodetector array camera and spectrometer (PACS) on the Herschel space observatory. A&A 518:L2. doi:10.1051/0004-6361/201014535

    Article  ADS  Google Scholar 

  • Price SD, Paxson C, Engelke C, Murdock TL (2004) Spectral irradiance calibration in the infrared. XV. Absolute calibration of standard stars by experiments on the midcourse space experiment. AJ 128:889–910. doi:10.1086/422024

    Article  ADS  Google Scholar 

  • Quinn TJ (1997) Primary methods of measurement and primary standards. Metrologia 34:61–65. doi:10.1088/0026-1394/34/1/9

    Article  ADS  Google Scholar 

  • Quinn TJ, Martin JE (1991a) Cryogenic radiometry, prospects for further improvements in accuracy. Metrologia 28(28):155–161

    Article  ADS  Google Scholar 

  • Quinn TJ, Martin JE (1991b) Cryogenic radiometry: the problem of hydrogen condensation in detectors operated at temperatures below 4 K. Appl Opt 30(16):2065–2067. doi:10.1364/AO.30.002065. http://ao.osa.org/abstract.cfm?URI=ao-30-16-2065

  • Reber CA, Trevathan CE, McNeal RJ, Luther MR (1993) The upper atmosphere research satellite (UARS) mission. J Geophys Res 98:10,643–10,647. doi:10.1029/92JD02828

    Article  ADS  Google Scholar 

  • Reeves EM, Parkinson WH (1970) Calibration changes in EUV solar satellite instruments. Appl Opt 9:1201–1208. doi:10.1364/AO.9.001201

    Article  ADS  Google Scholar 

  • Reeves EM, Timothy JG, Huber MCE (1977a) Extreme UV spectroheliometer on the Apollo telescope mount. Appl Opt 16:837–848

    Article  ADS  Google Scholar 

  • Reeves EM, Timothy JG, Withbroe GL, Huber MCE (1977b) Photometric calibration of the EUV spectroheliometer on ATM. Appl Opt 16:849–857

    Article  ADS  Google Scholar 

  • Rieke GH, Blaylock M, Decin L, Engelbracht C, Ogle P, Avrett E, Carpenter J, Cutri RM, Armus L, Gordon K, Gray RO, Hinz J, Su K, Willmer CNA (2008) Absolute physical calibration in the infrared. AJ 135:2245–2263. doi:10.1088/0004-6256/135/6/2245

    Article  ADS  Google Scholar 

  • Rosa MR (1997) Physical modeling of scientific instruments. In: Hunt G, Payne H (eds) Astronomical data analysis software and systems VI, astronomical society of the pacific conference series, vol 125, p 411

  • Rothschild RE, Blanco PR, Gruber DE, Heindl WA, MacDonald DR, Marsden DC, Pelling MR, Wayne LR, Hink PL (1998) In-flight performance of the high-energy X-ray timing experiment on the Rossi x-ray Timing Explorer. ApJ 496:538–549. doi:10.1086/305377

    Article  ADS  Google Scholar 

  • Rottman G, Mount G, Lawrence G, Woods T, Harder J, Tournois S (1998) Solar spectral irradiance measuremetns: visible to near-infrared regions. Metrologia 35:707–712. doi:10.1088/0026-1394/35/4/82

    Article  ADS  Google Scholar 

  • Rottman GJ, Woods TN (1994) Upper atmosphere research satellite (UARS) solar stellar irradiance comparison experiment (SOLSTICE). In: Wang J, Hays PB (eds) Optical spectroscopic techniques and instrumentation for atmospheric and space research, society of photo-optical instrumentation engineers (SPIE) conference series, vol 2266, pp 317–327

  • Sahnow DJ, Moos HW, Ake TB, Andersson BG, Andre M, Artis D, Berman AF, Blair WP, Brownsberger KR, Calvani HM, Chayer P, Conard SJ, Feldman PD, Friedman SD, Fullerton AW, Gaines GA, Green JC, Gummin MA, Joyce JB, Kaiser ME, Kruk JW, Lindler DJ, Massa D, Murphy EM, Oegerle WR, Ohl RG, Osterman SN, Roberts BA, Roth KC, Sankrit R, Sembach KR, Shelton RL, Siegmund OH, Weaver HA, Wilkinson E (2000a) On-orbit performance of the Far Ultraviolet Spectroscopic Explorer (FUSE). In: Breckinridge JB, Jakobsen P (eds) UV, optical, and IR space telescopes and instruments, society of photo-optical instrumentation engineers (SPIE) conference series, vol 4013, pp 334–343

  • Sahnow DJ, Moos HW, Friedman SD, Blair WP, Conard SJ, Kruk JW, Murphy EM, Oegerle WR, Ake TB (2000b) Far Ultraviolet Spectroscopic Explorer: one year in orbit. In: Fineschi S, Korendyke CM, Siegmund OH, Woodgate BE (eds) Instrumentation for UV/EUV astronomy and solar missions, society of photo-optical instrumentation engineers (SPIE) conference series, vol 4139, pp 131–136

  • Saloman EB (1978) Typical photoefficiency between 20–250 eV of windowless XUV photodiodes with tungsten and anodized aluminum oxide photocathodes. Appl Opt 17:1489–1490. doi:10.1364/AO.17.001489

    Article  ADS  Google Scholar 

  • Samson JA, Ederer DL (2000) Vacuum ultraviolet spectroscopy. Academic Press, London

    Google Scholar 

  • Samson JAR (1964) Photoionization cross sections of xenon from the \(2\text{ p }\frac{1}{2}\) edge to 280 Å. J Opt Soc Am 54(6):842–842. doi:10.1364/JOSA.54.000842. http://www.osapublishing.org/abstract.cfm?URI=josa-54-6-842

  • Samson JAR, Haddad GN (1974) Absolute photon-flux measurements in the vacuum ultraviolet. J Opt Soc Am 64(1):47–54. doi:10.1364/JOSA.64.000047. http://www.osapublishing.org/abstract.cfm?URI=josa-64-1-47

  • Santangelo AE, Piraino S, Segreto A, Fazio G, Giarrusso S (1997) In-orbit performance and calibration of the High-Pressure Gas Scintillation Proportional Counter on board the BeppoSAX satellite. In: Siegmund OH, Gummin MA (eds) EUV, X-ray, and gamma-ray instrumentation for astronomy viii, society of photo-optical instrumentation engineers (SPIE) conference series, vol 3114, pp 216–227

  • Schläppi B, Altwegg K, Balsiger H, Hässig M, Jäckel A, Wurz P, Fiethe B, Rubin M, Fuselier SA, Berthelier JJ, de Keyser J, RèMe H, Mall U (2010) Influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry. J Geophys Res (Space Phys) 115(A14):A12313. doi:10.1029/2010JA015734

    ADS  Google Scholar 

  • Schmidtke G (2015) Extreme ultraviolet spectral irradiance measurements since 1946. Hist Geo Space Sci 6:3–22. doi:10.5194/hgss-6-3-2015

    Article  ADS  Google Scholar 

  • Schmidtke G, Brunner R, Eberhard D, Halford B, Klocke U, Knothe M, Konz W, Riedel WJ, Wolf H (2006) SOL ACES: auto-calibrating EUV/UV spectrometers for measurements onboard the International Space Station. Adv Space Res 37:273–282. doi:10.1016/j.asr.2005.01.112

    Article  ADS  Google Scholar 

  • Schmidtke G, Nikutowski B, Jacobi C, Brunner R, Erhardt C, Knecht S, Scherle J, Schlagenhauf J (2014) Solar EUV irradiance measurements by the auto-calibrating EUV spectrometers (SolACES) aboard the International Space Station (ISS). Sol Phys 289:1863–1883. doi:10.1007/s11207-013-0430-5

    Article  ADS  Google Scholar 

  • Schönfelder V, Kanbach G (2013) Imaging through Compton scattering and pair creation. In: Huber M, Pauluhn A, Culhane J, Timothy J, Wilhelm K, Zehnder A (eds) Observing photons in space. Springer, London, pp 225–242

    Chapter  Google Scholar 

  • Schou J, Scherrer PH, Bush RI, Wachter R, Couvidat S, Rabello-Soares MC, Bogart RS, Hoeksema JT, Liu Y, Duvall TL, Akin DJ, Allard BA, Miles JW, Rairden R, Shine RA, Tarbell TD, Title AM, Wolfson CJ, Elmore DF, Norton AA, Tomczyk S (2012) ground calibration of the helioseismic and magnetic imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Sol Phys 275:229–259. doi:10.1007/s11207-011-9842-2

    Article  ADS  Google Scholar 

  • Schühle U, Curdt W, Hollandt J, Feldman U, Lemaire P, Wilhelm K (2000) calibration of the vacuum-ultraviolet spectrograph SUMER on the SOHO spacecraft with the B detector. Appl Opt 39:418–425. doi:10.1364/AO.39.000418

    Article  ADS  Google Scholar 

  • Schwartz DA, David LP, Donnelly RH, Edgar RJ, Gaetz TJ, Graessle DE, Jerius D, Juda M, Kellogg EM, McNamara BR, Plucinsky PP, Van Speybroeck LP, Wargelin BJ, Wolk S, Zhao P, Dewey D, Marshall HL, Schulz NS, Elsner RF, Kolodziejczak JJ, O’Dell SL, Swartz DA, Tennant AF, Weisskopf MC (2000) Absolute effective area of the Chandra high-resolution mirror assembly (HRMA). In: Truemper JE, Aschenbach B (eds) X-ray optics, instruments, and missions iii, society of photo-optical instrumentation engineers (SPIE) conference series, vol 4012, pp 28–40

  • Schwinger J (1949) On the classical radiation of accelerated electrons. Phys Rev 75:1912–1925. doi:10.1103/PhysRev.75.1912. http://link.aps.org/doi/10.1103/PhysRev.75.1912

  • Seely JF, Brown CM, Windt DL, Donguy S, Kjornrattanawanich B (2004) Normal-incidence efficiencies of multilayer-coated laminar gratings for the extreme-ultraviolet imaging spectrometer on the Solar-B mission. Appl Opt 43:1463–1471. doi:10.1364/AO.43.001463

    Article  ADS  Google Scholar 

  • Selby MJ, Mountain CM, Blackwell DE, Petford AD, Leggett SK (1983) Measurement of the absolute monochromatic flux from VEGA at 2.20 and 3.80 microns by comparison with a furnace. MNRAS 203:795–800

    Article  ADS  Google Scholar 

  • Sembach K (2015) Towards a 2020 vision for the Hubble Space Telescope. Tech. rep., STScI, Newsletter 32/01:1–3

  • Sembay S, Guainazzi M, Plucinsky P, Nevalainen J (2010) Defining high-energy calibration standards: IACHEC (International Astronomical Consortium for High-Energy Calibration). In: X-ray astronomy 2009; present Status. Multi-wavelength approach and future perspectives, vol 1248, pp 593–594. doi:10.1063/1.3475350

  • Sing D, Holberg JB, Dupuis J (2002) A comparison of EUVE fluxes with absolute stellar calibration at longer wavelengths. In: Howell SB, Dupuis J, Golombek D, Walter FM, Cullison J (eds) Continuing the challenge of EUV astronomy: current analysis and prospects for the future, astronomical society of the pacific conference series, vol 264, p 57

  • Sirk MM, Vallerga JV, Finley DS, Jelinsky P, Malina RF (1997) Performance of the extreme ultraviolet explorer imaging telescopes. ApJS 110:347–356. doi:10.1086/313002

    Article  ADS  Google Scholar 

  • Smith AW, Woodward JT, Jenkins CA, Brown SW, Lykke KR (2009) Absolute flux calibration of stars: calibration of the reference telescope. Metrologia 46:219–223. doi:10.1088/0026-1394/46/4/S16

    Article  ADS  Google Scholar 

  • Smith DM, Lin RP, Turin P, Curtis DW, Primbsch JH, Campbell RD, Abiad R, Schroeder P, Cork CP, Hull EL, Landis DA, Madden NW, Malone D, Pehl RH, Raudorf T, Sangsingkeow P, Boyle R, Banks IS, Shirey K, Schwartz R (2002) The RHESSI spectrometer. Sol Phys 210:33–60. doi:10.1023/A:1022400716414

    Article  ADS  Google Scholar 

  • Smith PL, Huber MCE, Parkinson WH, Kuhne M, Kock M (1991) In-orbit extreme ultraviolet radiometric calibration of satellite instrumentation. In: Malina RF, Bowyer S (eds) Extreme ultraviolet astronomy, p 390

  • Snow M, Reberac A, Quémerais E, Clarke J, McClintock WE, Woods TN (2013) A new catalog of ultraviolet stellar spectra for calibration. In: Quémerais, E, Snow M, Bonnet R-M (eds) Springer, New York, pp 191–226. doi:10.1007/978-1-4614-6384-9_7

  • Stock M, Fischer J, Friedrich R, Jung HJ, Thornagel R, Ulm G, Wende B (1993) Present state of the comparison between radiometric scales based on three primary standards. Metrologia 30:439–449. doi:10.1088/0026-1394/30/4/041

    Article  ADS  Google Scholar 

  • Strongylis GJ, Bohlin RC (1979) Absolute calibration in the 1750 A–3350 A region. PASP 91:205–213. doi:10.1086/130472

    Article  ADS  Google Scholar 

  • Strüder L, Briel U, Dennerl K, Hartmann R, Kendziorra E, Meidinger N, Pfeffermann E, Reppin C, Aschenbach B, Bornemann W, Bräuninger H, Burkert W, Elender M, Freyberg M, Haberl F, Hartner G, Heuschmann F, Hippmann H, Kastelic E, Kemmer S, Kettenring G, Kink W, Krause N, Müller S, Oppitz A, Pietsch W, Popp M, Predehl P, Read A, Stephan KH, Stötter D, Trümper J, Holl P, Kemmer J, Soltau H, Stötter R, Weber U, Weichert U, von Zanthier C, Carathanassis D, Lutz G, Richter RH, Solc P, Böttcher H, Kuster M, Staubert R, Abbey A, Holland A, Turner M, Balasini M, Bignami GF, La Palombara N, Villa G, Buttler W, Gianini F, Lainé R, Lumb D, Dhez P (2001) The European photon imaging camera on XMM-Newton: the pn-CCD camera. A&A 365:L18–L26. doi:10.1051/0004-6361:20000066

    Article  ADS  Google Scholar 

  • Sullivan M, Guy J, Conley A, Regnault N, Astier P, Balland C, Basa S, Carlberg RG, Fouchez D, Hardin D, Hook IM, Howell DA, Pain R, Palanque-Delabrouille N, Perrett KM, Pritchet CJ, Rich J, Ruhlmann-Kleider V, Balam D, Baumont S, Ellis RS, Fabbro S, Fakhouri HK, Fourmanoit N, González-Gaitán S, Graham ML, Hudson MJ, Hsiao E, Kronborg T, Lidman C, Mourao AM, Neill JD, Perlmutter S, Ripoche P, Suzuki N, Walker ES (2011) SNLS3: constraints on dark energy combining the supernova legacy survey three-year data with other probes. ApJ 737:102. doi:10.1088/0004-637X/737/2/102

    Article  ADS  Google Scholar 

  • Swinyard B, Wild W (2013) Far-infrared imaging and spectroscopic instrumentation. In: Huber M, Pauluhn A, Culhane J, Timothy J, Wilhelm K, Zehnder A (eds) Observing photons in space. Springer, London, pp 261–282

    Chapter  Google Scholar 

  • Swinyard BM, Polehampton ET, Hopwood R, Valtchanov I, Lu N, Fulton T, Benielli D, Imhof P, Marchili N, Baluteau JP, Bendo GJ, Ferlet M, Griffin MJ, Lim TL, Makiwa G, Naylor DA, Orton GS, Papageorgiou A, Pearson CP, Schulz B, Sidher SD, Spencer LD, van der Wiel MHD, Wu R (2014) Calibration of the Herschel SPIRE Fourier transform spectrometer. MNRAS 440:3658–3674. doi:10.1093/mnras/stu409

    Article  ADS  Google Scholar 

  • Takita S, Ikeda N, Kitamura Y, Ishihara D, Kataza H, Kawamura A, Oyabu S, Ueno M, Yamamura I (2012) Slow-scan observations with the infrared camera (IRC) aboard AKARI. PASJ 64:126. doi:10.1093/pasj/64.6.126

    ADS  Google Scholar 

  • Taubert RD, Monte C, Baltruschat C, Schirmacher A, Gutschwager B, Hartmann J, Hollandt J, Kochems D, Küchel C, te Plate M (2009) The spectral photon flux of the radiometric calibration spectral source for the NIRSpec instrument of the James Webb Space Telescope. Metrologia 46:207. doi:10.1088/0026-1394/46/4/S14

    Article  ADS  Google Scholar 

  • Taylor BG, Andresen RD, Peacock A, Zobl R (1981) The EXOSAT mission. Space Sci Rev 30:479–494. doi:10.1007/BF01246069

    Article  ADS  Google Scholar 

  • Thekaekara MP (1974) Extraterrestrial solar spectrum, 3000–6100 Å at 1-Å intervals. Appl Opt 13:518–522. doi:10.1364/AO.13.000518

    Article  ADS  Google Scholar 

  • Thernisien AF, Morrill JS, Howard RA, Wang D (2006) Photometric calibration of the Lasco-C3 coronagraph using stars. Sol Phys 233:155–169. doi:10.1007/s11207-006-2047-4

    Article  ADS  Google Scholar 

  • Thomas R (2002) 20:20 vision and SOHO cleanliness. ISSI Sci Rep Ser 2:91–104

    ADS  Google Scholar 

  • Thompson WT, Reginald NL (2008) The radiometric and pointing calibration of SECCHI COR1 on STEREO. Sol Phys 250:443–454. doi:10.1007/s11207-008-9228-2

    Article  ADS  Google Scholar 

  • Thompson WT, McMullin DR, Newmark JS (2002) Comparison of CDS irradiance measurements with SEM and EIT. ISSI Sci Rep Ser 2:211–223

    ADS  Google Scholar 

  • Thornagel R, Fischer J, Friedrich R, Stock M, Ulm G, Wende B (1996) The electron storage ring BESSY as a primary standard source—a radiometric comparison with a cryogenic electrical substitution radiometer in the visible. Metrologia 32:459

    Article  ADS  Google Scholar 

  • Thuillier G, Floyd L, Woods TN, Cebula R, Hilsenrath E, Hersé M, Labs D (2004a) Solar irradiance reference spectra. In: Pap JM, Fox P, Frohlich C, Hudson HS, Kuhn J, McCormack J, North G, Sprigg W, Wu ST (eds) Solar variability and its effects on climate. Geophysical monograph series, vol 141. American Geophysical Union, Washington DC, pp 171–194

  • Thuillier G, Floyd L, Woods TN, Cebula R, Hilsenrath E, Hersé M, Labs D (2004b) Solar irradiance reference spectra for two solar active levels. Adv Space Res 34:256–261. doi:10.1016/j.asr.2002.12.004

    Article  ADS  Google Scholar 

  • Thuillier G, Foujols T, Bolsée D, Gillotay D, Hersé M, Peetermans W, Decuyper W, Mandel H, Sperfeld P, Pape S, Taubert DR, Hartmann J (2009) SOLAR/SOLSPEC: scientific objectives, instrument performance and its absolute calibration using a blackbody as primary standard source. Sol Phys 257:185–213. doi:10.1007/s11207-009-9361-6

    Article  ADS  Google Scholar 

  • Timothy JG, Chambers RM, d’Entremont AM, Lanham NW, Reeves EM (1975) A sounding rocket spectroheliometer for photometric studies at extreme ultraviolet wavelengths. Space Sci Instrum 1:23–49

    ADS  Google Scholar 

  • Tüg H, White NM, Lockwood GW (1977) Absolute energy distributions of Alpha Lyrae and 109 Virginis from 3295 A to 9040 A. A&A 61:679–684

    ADS  Google Scholar 

  • Turner MJL, Abbey A, Arnaud M, Balasini M, Barbera M, Belsole E, Bennie PJ, Bernard JP, Bignami GF, Boer M, Briel U, Butler I, Cara C, Chabaud C, Cole R, Collura A, Conte M, Cros A, Denby M, Dhez P, Di Coco G, Dowson J, Ferrando P, Ghizzardi S, Gianotti F, Goodall CV, Gretton L, Griffiths RG, Hainaut O, Hochedez JF, Holland AD, Jourdain E, Kendziorra E, Lagostina A, Laine R, La Palombara N, Lortholary M, Lumb D, Marty P, Molendi S, Pigot C, Poindron E, Pounds KA, Reeves JN, Reppin C, Rothenflug R, Salvetat P, Sauvageot JL, Schmitt D, Sembay S, Short ADT, Spragg J, Stephen J, Strüder L, Tiengo A, Trifoglio M, Trümper J, Vercellone S, Vigroux L, Villa G, Ward MJ, Whitehead S, Zonca E (2001) The European photon imaging camera on XMM-Newton: the MOS cameras. A&A 365:L27–L35. doi:10.1051/0004-6361:20000087

    Article  ADS  Google Scholar 

  • VanHoosier ME, Bartoe JDF, Brueckner GE, Prinz DK (1988) Absolute solar spectral irradiance 120 nm–400 nm (results from the solar ultraviolet spectral irradiance monitor-SUSIM-experiment on board spacelab 2). Astrophys Lett Commun 27:163–168

    ADS  Google Scholar 

  • von der Linden W, Dose V, von Toussaint U (2014) Bayesian probability theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Wang T, Thomas RJ, Brosius JW, Young PR, Rabin DM, Davila JM, Del Zanna G (2011) Underflight calibration of SOHO/CDS and Hinode/EIS with EUNIS-07. ApJS 197:32. doi:10.1088/0067-0049/197/2/32

    Article  ADS  Google Scholar 

  • Waters WR, Walker JH, Hattenburg AT (1988) The NBS scale of radiance temperature. Tech. rep, NBS/NIST

  • Weisskopf MC, Tananbaum HD, Van Speybroeck LP, O’Dell SL (2000) Chandra X-ray Observatory (CXO): overview. In: Truemper JE, Aschenbach B (eds) X-ray optics, instruments, and missions III, society of photo-optical instrumentation engineers (SPIE) conference series, vol 4012, pp 2–16

  • Weisskopf MC, Brinkman B, Canizares C, Garmire G, Murray S, Van Speybroeck LP (2002) An overview of the performance and scientific results from the Chandra X-ray observatory. PASP 114:1–24. doi:10.1086/338108

    Article  ADS  Google Scholar 

  • Wild W (2013) Coherent far-infrared/submillimetre detectors. In: Huber M, Pauluhn A, Culhane J, Timothy J, Wilhelm K, Zehnder A (eds) Observing photons in space. Springer, London, pp 543–564

    Chapter  Google Scholar 

  • Wilhelm K (2006) Solar VUV measurements obtained by SOHO instruments and their radiometric calibration. Adv Space Res 37:225–233. doi:10.1016/j.asr.2004.12.057

    Article  ADS  Google Scholar 

  • Wilhelm K (2010) Quantitative solar spectroscopy. Astron Nachr 331:502–511. doi:10.1002/asna.200911360

    Article  ADS  Google Scholar 

  • Wilhelm K, Fröhlich C (2013) Photons—from source to detector. In: Huber M, Pauluhn A, Culhane J, Timothy J, Wilhelm K, Zehnder A (eds) Observing photons in space. Springer, London, pp 21–53

    Chapter  Google Scholar 

  • Wilhelm K, Curdt W, Marsch E, Schühle U, Lemaire P, Gabriel A, Vial JC, Grewing M, Huber MCE, Jordan SD, Poland AI, Thomas RJ, Kühne M, Timothy JG, Hassler DM, Siegmund OHW (1995) SUMER—solar ultraviolet measurements of emitted radiation. Sol Phys 162:189–231. doi:10.1007/BF00733430

    Article  ADS  Google Scholar 

  • Wilhelm K, Lemaire P, Feldman U, Hollandt J, Schühle U, Curdt W (1997) Radiometric calibration of SUMER: refinement of the laboratory results under operational conditions on SOHO. Appl Opt 36:6416–6422. doi:10.1364/AO.36.006416

    Article  ADS  Google Scholar 

  • Wilhelm K, Schühle U, Curdt W, Dammasch IE, Hollandt J, Lemaire P, Huber MCE (2002) Solar vacuum-ultraviolet radiometry with SUMER. In: Pauluhn A, Huber M, von Steiger R (eds) The radiometric calibration of SOHO, vol 2. ESA, Noordwijk, pp 145–160 (ISSI Scientific Report SR-002)

  • Willson RC (1999) Solar irradiance variations. In: Strong KT, Saba JLR, Haisch BM, Schmelz JT (eds) The many faces of the sun: a summary of the results from NASA’s Solar Maximum Mission, p 19

  • Willson RC (2014) ACRIM3 and the total solar irradiance database. Ap&SS 352:341–352. doi:10.1007/s10509-014-1961-4

    Article  ADS  Google Scholar 

  • Woods TN, Rottman G (2005) XUV photometer system (XPS): solar variations during the SORCE mission. Sol Phys 230:375–387. doi:10.1007/s11207-005-2555-7

    Article  ADS  Google Scholar 

  • Woods TN, Rottman GJ, Ucker GJ (1993) Solar-stellar irradiance comparison experiment 1. II—instrument calibrations. J Geophys Res 98:10,679–10,694. doi:10.1029/93JD00463

    Article  ADS  Google Scholar 

  • Woods TN, Prinz DK, Rottman GJ, London J, Crane PC, Cebula RP, Hilsenrath E, Brueckner GE, Andrews MD, White OR, VanHoosier ME, Floyd LE, Herring LC, Knapp BG, Pankratz CK, Reiser PA (1996) Validation of the UARS solar ultraviolet irradiances: comparison with the ATLAS 1 and 2 measurements. J Geophys Res 101:9541–9570. doi:10.1029/96JD00225

    Article  ADS  Google Scholar 

  • Woods TN, Bailey SM, Eparvier FG, Lawrence GM, Lean J, McClintock WE, Roble RG, Rottman GJ, Solomon SC, Tobiska WK, Ucker GJ, White OR (1998) TIMED solar EUV experiment. In: Korendyke CM (ed) Missions to the Sun II, society of photo-optical instrumentation engineers (SPIE) conference series, vol 3442, pp 180–191

  • Woods TN, Rottman G, Vest R (2005) XUV photometer system (XPS): overview and calibrations. Sol Phys 230:345–374. doi:10.1007/s11207-005-4119-2

    Article  ADS  Google Scholar 

  • Woods TN, Chamberlin PC, Harder JW, Hock RA, Snow M, Eparvier FG, Fontenla J, McClintock WE, Richard EC (2009) Solar irradiance reference spectra (SIRS) for the 2008 whole heliosphere interval (WHI). Geophys Res Lett 36:L01101. doi:10.1029/2008GL036373

    Article  ADS  Google Scholar 

  • Woods TN, Eparvier FG, Hock R, Jones AR, Woodraska D, Judge D, Didkovsky L, Lean J, Mariska J, Warren H, McMullin D, Chamberlin P, Berthiaume G, Bailey S, Fuller-Rowell T, Sojka J, Tobiska WK, Viereck R (2012) ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Sol Phys 275:115–143. doi:10.1007/s11207-009-9487-6

    Article  ADS  Google Scholar 

  • Yamamura I, Makiuti S, Ikeda N, Fukuda Y, Oyabu S, Koga T, White GJ (2010) VizieR online data catalog: AKARI/FIS All-Sky survey point source catalogues (ISAS/JAXA, 2010). VizieR Online Data Cat 2298:37

  • Yeo K, Krivova N, Solanki S (2015) Solar cycle variation in solar irradiance. In: Balogh A, Hudson H, Petrovay K, von Steiger R (eds) The solar activity cycle, space sciences series of ISSI, vol 53. Springer, New York, pp 137–167. doi:10.1007/978-1-4939-2584-1_5

Download references

Acknowledgments

The authors sincerely thank K. Bennett, C. T. Bingham, R. C. Bohlin, D. J. Coletti, T. Dudok de Wit, C. Fröhlich, L. D. Gardner, A. Gottwald, U. Grothkopf, J. B. Holberg, J. Hollandt, C. V. H. Huber-Ott, F. Jansen, C. Jones, E. M. Kellogg, R. M. Klein, J. L. Kohl, J. W. Kruk, M. Kühne, X. Liu, R. Paladini, W. H. Parkinson, G. Schmidtke, J. G. Timothy, G. Ulm, K. Wilhelm, C. Winkler and B. J. Wargelin for illuminating discussions, reference material, both published and unpublished, and other assistance. PLS thanks the Space Science Department of ESA for travel support. He was also supported in part by NASA Grants NAGW-1596, and SOHO, and SPARTAN grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuschka Pauluhn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauluhn, A., Huber, M.C.E., Smith, P.L. et al. Spectroradiometry with space telescopes. Astron Astrophys Rev 24, 3 (2016). https://doi.org/10.1007/s00159-015-0086-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-015-0086-2

Keywords

Navigation