Skip to main content
Log in

Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper aims to represent a multi-objective equilibrium optimizer slime mould algorithm (MOEOSMA) to solve real-world constraint engineering problems. The proposed algorithm has a better optimization performance than the existing multi-objective slime mould algorithm. In the MOEOSMA, dynamic coefficients are used to adjust exploration and exploitation trends. The elite archiving mechanism is used to promote the convergence of the algorithm. The crowding distance method is used to maintain the distribution of the Pareto front. The equilibrium pool strategy is used to simulate the cooperative foraging behavior of the slime mould, which helps to enhance the exploration ability of the algorithm. The performance of MOEOSMA is evaluated on the latest CEC2020 functions, eight real-world multi-objective constraint engineering problems, and four large-scale truss structure optimization problems. The experimental results show that the proposed MOEOSMA not only finds more Pareto optimal solutions, but also maintains a good distribution in the decision space and objective space. Statistical results show that MOEOSMA has a strong competitive advantage in terms of convergence, diversity, uniformity, and extensiveness, and its comprehensive performance is significantly better than other comparable algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 62066005, U21A20464, 62102183, and Project of the Jiangsu Province Natural Science Foundation under Grant under Grant No. BK20180462. Project of the Guangxi Science and Technology under Grant No. 2019KY0185, and Innovation Project of Guangxi Minzu University Graduate Education under Grant gxun-chxs2021058.

Author information

Authors and Affiliations

Authors

Contributions

QL: validation, writing—review & editing, supervision. SY: conceptualization, methodology, writing—original draft. GZ: algorithm design & analysis. WM: algorithm analysis. YZ: review & editing. YZ: supervision, writing—review & editing.

Corresponding author

Correspondence to Yongquan Zhou.

Ethics declarations

Conflict of interest

No potential conflict of interest has been stated by the authors.

Replication of results

GitHub: https://github.com/Shihong-Yin/MOEOSMA

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible editor: Mehmet Polat Saka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Real-world constraint engineering design problems

1.1 Speed reducer design problem

$$\begin{gathered} {\text{Consider }}{\mathbf{x}} = [x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} ] = [b,m,z,l_{1} ,l_{2} ,d_{1} ,d_{2} ] \hfill \\ {\text{Minimize }}f_{1} ({\mathbf{x}}) = 0.7854x_{1} x_{2}^{2} (14.9334x_{3} + 3.3333x_{3}^{2} - 43.0934) \hfill \\ \, - 1.508x_{1} \left( {x_{6}^{2} + x_{7}^{2} } \right) + 0.7854\left( {x_{4} x_{6}^{2} + x_{5} x_{7}^{2} } \right) + 7.4777\left( {x_{6}^{3} + x_{7}^{3} } \right) \hfill \\ \, f_{2} ({\mathbf{x}}) = {{\sqrt {\left( {{{745x_{4} } \mathord{\left/ {\vphantom {{745x_{4} } {(x_{2} x_{3} )}}} \right. \kern-0pt} {(x_{2} x_{3} )}}} \right)^{2} + 16.9 \times 10^{6} } } \mathord{\left/ {\vphantom {{\sqrt {\left( {{{745x_{4} } \mathord{\left/ {\vphantom {{745x_{4} } {(x_{2} x_{3} )}}} \right. \kern-0pt} {(x_{2} x_{3} )}}} \right)^{2} + 16.9 \times 10^{6} } } {(0.1x_{6}^{3} )}}} \right. \kern-0pt} {(0.1x_{6}^{3} )}} \hfill \\ {\text{subject to: }}g_{1} ({\mathbf{x}}) = {{27} \mathord{\left/ {\vphantom {{27} {(x_{1} x_{3} x_{2}^{2} )}}} \right. \kern-0pt} {(x_{1} x_{3} x_{2}^{2} )}} \le 1; \, g_{2} ({\mathbf{x}}) = {{397.5} \mathord{\left/ {\vphantom {{397.5} {(x_{1} x_{2}^{2} x_{3}^{2} )}}} \right. \kern-0pt} {(x_{1} x_{2}^{2} x_{3}^{2} )}} \le 1 \hfill \\ \, g_{3} ({\mathbf{x}}) = {{1.93x_{4}^{3} } \mathord{\left/ {\vphantom {{1.93x_{4}^{3} } {(x_{2} x_{3} x_{6}^{4} )}}} \right. \kern-0pt} {(x_{2} x_{3} x_{6}^{4} )}} \le 1; \, g_{4} ({\mathbf{x}}) = {{1.93x_{5}^{3} } \mathord{\left/ {\vphantom {{1.93x_{5}^{3} } {(x_{2} x_{3} x_{7}^{4} )}}} \right. \kern-0pt} {(x_{2} x_{3} x_{7}^{4} )}} \le 1 \hfill \\ \, g_{5} ({\mathbf{x}}) = {{x_{2} x_{3} } \mathord{\left/ {\vphantom {{x_{2} x_{3} } {40}}} \right. \kern-0pt} {40}} \le 1; \, g_{6} ({\mathbf{x}}) = {{x_{1} } \mathord{\left/ {\vphantom {{x_{1} } {(12x_{2} )}}} \right. \kern-0pt} {(12x_{2} )}} \le 1 \hfill \\ \, g_{7} ({\mathbf{x}}) = {{5x_{2} } \mathord{\left/ {\vphantom {{5x_{2} } {x_{1} }}} \right. \kern-0pt} {x_{1} }} \le 1; \, g_{8} ({\mathbf{x}}) = {{(1.5x_{6} + 1.9)} \mathord{\left/ {\vphantom {{(1.5x_{6} + 1.9)} {x_{4} }}} \right. \kern-0pt} {x_{4} }} \le 1 \hfill \\ \, g_{9} ({\mathbf{x}}) = {{(1.1x_{7} + 1.9)} \mathord{\left/ {\vphantom {{(1.1x_{7} + 1.9)} {x_{5} }}} \right. \kern-0pt} {x_{5} }} \le 1; \, g_{10} ({\mathbf{x}}) = f_{2} ({\mathbf{x}}) - 1100 \le 1 \hfill \\ \, g_{11} ({\mathbf{x}}) = {{\sqrt {\left( {{{745x_{5} } \mathord{\left/ {\vphantom {{745x_{5} } {(x_{2} x_{3} )}}} \right. \kern-0pt} {(x_{2} x_{3} )}}} \right)^{2} + 157.5 \times 10^{6} } } \mathord{\left/ {\vphantom {{\sqrt {\left( {{{745x_{5} } \mathord{\left/ {\vphantom {{745x_{5} } {(x_{2} x_{3} )}}} \right. \kern-0pt} {(x_{2} x_{3} )}}} \right)^{2} + 157.5 \times 10^{6} } } {(0.1x_{7}^{3} )}}} \right. \kern-0pt} {(0.1x_{7}^{3} )}} - 850 \le 1 \hfill \\ {\text{with 2}}{.6} \le x_{1} \le 3.6,0.7 \le x_{2} \le 0.8,17 \le x_{3} \le 28({\text{integer}}), \hfill \\ \, 7.3 \le x_{4} ,x_{5} \le 8.3,{2}{\text{.9}} \le x_{6} \le 3.9,5.0 \le x_{7} \le 5.5. \hfill \\ \end{gathered}$$

1.2 Spring design problem

$$\begin{gathered} {\text{Consider: }}{\mathbf{x}} = [x_{1} ,x_{2} ,x_{3} ] = [d,D,N] \hfill \\ {\text{Minimize: }}f_{1} ({\mathbf{x}}) = 0.25\pi^{2} x_{1}^{2} x_{2} (x_{3} + 2) \hfill \\ \, f_{2} ({\mathbf{x}}) = 8000{{c_{f} x_{2} } \mathord{\left/ {\vphantom {{c_{f} x_{2} } {(\pi x_{1}^{3} )}}} \right. \kern-0pt} {(\pi x_{1}^{3} )}} \hfill \\ {\text{subject to: }}g_{1} ({\mathbf{x}}) = f_{1} ({\mathbf{x}}) - V_{\max } \le 0; \, g_{2} ({\mathbf{x}}) = f_{2} ({\mathbf{x}}) - S \le 0 \hfill \\ \, g_{3} ({\mathbf{x}}) = l_{f} - l_{\max } \le 0; \, g_{4} ({\mathbf{x}}) = d_{\min } - x_{1} \le 0 \hfill \\ \, g_{5} ({\mathbf{x}}) = x_{1} + x_{2} - D_{\max } \le 0; \, g_{6} ({\mathbf{x}}) = 3 - C \le 0 \hfill \\ \, g_{7} ({\mathbf{x}}) = \sigma_{p} - \sigma_{pm} \le 0; \, g_{8} ({\mathbf{x}}) = 1.25 - {{700} \mathord{\left/ {\vphantom {{700} K}} \right. \kern-0pt} K} \le 0 \hfill \\ {\text{where }}V_{\max } = 30; \, S = 189000; \, l_{\max } = 14; \, d_{\min } = 0.2; \hfill \\ \, D_{\max } = 3; \, \sigma_{pm} = 6; \, \sigma_{p} = {{300} \mathord{\left/ {\vphantom {{300} K}} \right. \kern-0pt} K}; \hfill \\ \, K = {{Gx_{1}^{4} } \mathord{\left/ {\vphantom {{Gx_{1}^{4} } {(8x_{2}^{3} x_{3} )}}} \right. \kern-0pt} {(8x_{2}^{3} x_{3} )}}; \, G = 11.5 \times 10^{6} ; \hfill \\ \, c_{f} = {{(4C - 1)} \mathord{\left/ {\vphantom {{(4C - 1)} {(4C - 4)}}} \right. \kern-0pt} {(4C - 4)}} + {{0.615} \mathord{\left/ {\vphantom {{0.615} C}} \right. \kern-0pt} C}; \, C = {{x_{2} } \mathord{\left/ {\vphantom {{x_{2} } {x_{1} }}} \right. \kern-0pt} {x_{1} }}; \hfill \\ \, l_{f} = 1.05x_{1} (x_{3} + 2) + {{1000} \mathord{\left/ {\vphantom {{1000} K}} \right. \kern-0pt} K}. \hfill \\ {\text{with }}x_{1} \in \{ {0}{\text{.009, 0}}{.0095, 0}{\text{.0104, 0}}{.0118, 0}{\text{.0128, 0}}{.0132, 0}{\text{.014,}} \hfill \\ { 0}{\text{.015, 0}}{.0162, 0}{\text{.0173, 0}}{.018, 0}{\text{.020, 0}}{.023, 0}{\text{.025,}} \hfill \\ { 0}{\text{.028, 0}}{.032, 0}{\text{.035, 0}}{.041, 0}{\text{.047, 0}}{.054, 0}{\text{.063,}} \hfill \\ { 0}{\text{.072, 0}}{.080, 0}{\text{.092, 0}}{.0105, 0}{\text{.120, 0}}{.135, 0}{\text{.148,}} \hfill \\ { 0}{\text{.162, 0}}{.177, 0}{\text{.192, 0}}{.207, 0}{\text{.225, 0}}{.244, 0}{\text{.263,}} \hfill \\ { 0}{\text{.283, 0}}{.307, 0}{\text{.331, 0}}{.362, 0}{\text{.394, 0}}{.4375, 0}{\text{.500}}\} , \hfill \\ { 1} \le x_{2} \le 30({\text{continuous}}),1 \le x_{3} \le 32({\text{integer}}). \hfill \\ \end{gathered}$$

1.3 Hydrostatic thrust bearing design problem

$$\begin{gathered} {\text{Consider: }}{\mathbf{x}} = [R,R_{0} ,\mu ,Q] \hfill \\ {\text{Minimize: }}f_{1} ({\mathbf{x}}) = \frac{1}{12}\left( {\frac{{Q \times P_{0} }}{0.7} + E_{f} } \right) \hfill \\ \, f_{2} ({\mathbf{x}}) = \frac{\gamma }{{g \cdot P_{0} }} \cdot \frac{Q}{2\pi Rh} \hfill \\ {\text{subject to: }}g_{1} ({\mathbf{x}}) = W_{s} - W \le 0; \, g_{2} ({\mathbf{x}}) = P_{0} - P_{\max } \le 0 \hfill \\ \, g_{3} ({\mathbf{x}}) = \Delta T - \Delta T_{\max } \le 0; \, g_{4} ({\mathbf{x}}) = h_{\min } - h \le 0 \hfill \\ \, g_{5} ({\mathbf{x}}) = R_{0} - R \le 0; \, g_{6} ({\mathbf{x}}) = f_{2} ({\mathbf{x}}) - 0.001 \le 0 \hfill \\ \, g_{7} ({\mathbf{x}}) = {W \mathord{\left/ {\vphantom {W {\left( {\pi \left( {R^{2} - R_{0}^{2} } \right)} \right)}}} \right. \kern-0pt} {\left( {\pi \left( {R^{2} - R_{0}^{2} } \right)} \right)}} - 5000 \le 0 \hfill \\ {\text{where }}W = \frac{{\pi P_{0} }}{2} \cdot \frac{{R^{2} - R_{0}^{2} }}{{\ln \left( {{R \mathord{\left/ {\vphantom {R {R_{0} }}} \right. \kern-0pt} {R_{0} }}} \right)}}; \, P_{0} = \frac{6\mu Q}{{\pi h^{3} }} \cdot \ln \left( {\frac{R}{{R_{0} }}} \right); \hfill \\ \, h = \left( {\frac{2\pi N}{{60}}} \right)^{2} \cdot \frac{2\pi \mu }{{E_{f} }} \cdot \frac{{R^{4} - R_{0}^{4} }}{4}; \, E_{f} = 9336Q \cdot \gamma \cdot C \cdot \Delta T; \hfill \\ \, \Delta T = 2\left( {10^{P} - 560} \right); \, P = \frac{{\log_{10} \log_{10} \left( {8.122 \times 10^{6} \mu + 0.8} \right) - C_{1} }}{n}; \hfill \\ \, \gamma = 0.0307; \, C = 0.5; \, n = - 3.55; \, C_{1} = 10.04; \, W_{s} = 101000; \hfill \\ \, P_{\max } = 1000; \, \Delta T_{\max } = 50; \, h_{\min } = 0.001; \, g = 386.4; \, N = 750. \hfill \\ {\text{with 1}} \le R,R_{0} ,Q \le 16,1 \times {10}^{ - 6} \le \mu \le 16 \times {10}^{ - 6} . \hfill \\ \end{gathered}$$

1.4 Vibrating platform design problem

$$\begin{gathered} {\text{Consider }}{\mathbf{x}} = [d_{1} ,d_{2} ,d_{3} ,b,L] \hfill \\ {\text{Minimize }}f_{1} ({\mathbf{x}}) = - {\pi \mathord{\left/ {\vphantom {\pi {(2L^{2} )}}} \right. \kern-0pt} {(2L^{2} )}} \cdot \sqrt {{{EI} \mathord{\left/ {\vphantom {{EI} \mu }} \right. \kern-0pt} \mu }} \hfill \\ \, f_{2} ({\mathbf{x}}) = 2b \cdot L\left( {c_{1} d_{1} - c_{2} (d_{1} - d_{2} ) - c_{3} (d_{2} - d_{3} )} \right) \hfill \\ {\text{subject to: }}g_{1} ({\mathbf{x}}) = \mu L - 2800 \le 0; \, g_{2} ({\mathbf{x}}) = d_{1} - d_{2} \le 0 \hfill \\ \, g_{3} ({\mathbf{x}}) = d_{2} - d_{1} - 0.15 \le 0; \, g_{4} ({\mathbf{x}}) = d_{2} - d_{3} \le 0 \hfill \\ \, g_{5} ({\mathbf{x}}) = d_{3} - d_{2} - 0.01 \le 0 \hfill \\ {\text{where }}EI = ({{2b} \mathord{\left/ {\vphantom {{2b} 3}} \right. \kern-0pt} 3})(E_{1} d_{1}^{3} - E_{2} (d_{1}^{3} - d_{2}^{3} ) - E_{3} (d_{2}^{3} - d_{3}^{3} )); \hfill \\ \, \mu = 2b(\rho_{1} d_{1} - \rho_{2} (d_{1} - d_{2} ) - \rho_{3} (d_{2} - d_{3} )). \hfill \\ {\text{with 0}}{.05} \le d_{1} \le 0.5,0.2 \le d_{2} \le 0.5,0.2 \le d_{3} \le 0.6, \hfill \\ \, 0.35 \le b \le 0.5,{3} \le L \le 6. \hfill \\ \end{gathered}$$

1.5 Car side impact design problem

$$\begin{gathered} {\text{Consider }}{\mathbf{x}} = [x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} ] \hfill \\ {\text{Minimize }}f_{1} ({\mathbf{x}}) = 4.90x_{1} + 6.67x_{2} + 6.98x_{3} + 4.01x_{4} + 1.78x_{5} \hfill \\ \, + 10^{ - 5} x_{6} + 2.73x_{7} + 1.98 \hfill \\ \, f_{2} ({\mathbf{x}}) = 4.72 - 0.19x_{2} x_{3} - 0.50x_{4} \hfill \\ \, f_{3} ({\mathbf{x}}) = 0.50 \cdot (V_{MBP} + V_{FD} ) \hfill \\ {\text{subject to: }}g_{1} ({\mathbf{x}}) = 1.16 - 0.0092928x_{3} - 0.3717x_{2} x_{4} \le 1 \hfill \\ \, g_{2} ({\mathbf{x}}) = 0.261 - 0.06486x_{1} + 0.0154464x_{6} - 0.0159x_{1} x_{2} \hfill \\ \, - 0.019x_{2} x_{7} + 0.0144x_{3} x_{5} \le 0.32 \hfill \\ \, g_{3} ({\mathbf{x}}) = 0.214 - 0.0587118x_{1} + 0.018x_{2}^{2} + 0.030408x_{3} \hfill \\ \, + 0.00817x_{5} + 0.03099x_{2} x_{6} - 0.018x_{2} x_{7} \hfill \\ \, - 0.00364x_{5} x_{6} \le 0.32 \hfill \\ \, g_{4} ({\mathbf{x}}) = 0.74 - 0.61x_{2} + 0.227x_{2}^{2} - 0.031296x_{3} \hfill \\ \, - 0.031872x_{7} \le 0.32 \hfill \\ \, g_{5} ({\mathbf{x}}) = 28.98 + 3.818x_{3} + 1.27296x_{6} - 2.68065x_{7} \hfill \\ \, - 4.2x_{1} x_{2} \le 32 \hfill \\ \, g_{6} ({\mathbf{x}}) = 33.86 - 3.795x_{2} + 2.95x_{3} - 3.4431x_{7} - 5.057x_{1} x_{2} \hfill \\ \, + 1.45728 \le 32 \hfill \\ \, g_{7} ({\mathbf{x}}) = 46.36 - 4.4505x_{1} - 9.9x_{2} \le 32 \hfill \\ \, g_{8} ({\mathbf{x}}) = f_{2} ({\mathbf{x}}) \le 4 \hfill \\ \, g_{9} ({\mathbf{x}}) = V_{MBP} \le 9.9 \hfill \\ \, g_{10} ({\mathbf{x}}) = V_{FD} \le 15.7 \hfill \\ {\text{where }}V_{MBP} = 10.58 - 0.67275x_{2} - 0.674x_{1} x_{2} ; \hfill \\ \, V_{FD} = 16.45 - 0.489x_{3} x_{7} - 0.843x_{5} x_{6} . \hfill \\ {\text{with 0}}{.5} \le x_{1} ,x_{3} ,x_{4} \le 1.5,{0}{\text{.45}} \le x_{2} \le 1.35, \hfill \\ { 0}{\text{.875}} \le x_{5} \le 2.625,0.4 \le x_{6} ,x_{7} \le 1.2. \hfill \\ \end{gathered}$$

1.6 Water resource management problem

$$\begin{gathered} {\text{Consider }}{\mathbf{x}} = [x_{1} ,x_{2} ,x_{3} ] \hfill \\ {\text{Minimize }}f_{1} ({\mathbf{x}}) = 106780.37(x_{2} + x_{3} ) + 61704.67 \hfill \\ \, f_{2} ({\mathbf{x}}) = 3000x_{1} \hfill \\ \, f_{3} ({\mathbf{x}}) = {{30570 \times 2289x_{2} } \mathord{\left/ {\vphantom {{30570 \times 2289x_{2} } {(0.06 \times 2289)^{0.65} }}} \right. \kern-0pt} {(0.06 \times 2289)^{0.65} }} \hfill \\ \, f_{4} ({\mathbf{x}}) = 250 \times 2289 \times \exp \left( {2.74 - 39.75x_{2} + 9.9x_{3} } \right) \hfill \\ \, f_{5} ({\mathbf{x}}) = 25\left( {{{1.39} \mathord{\left/ {\vphantom {{1.39} {(x_{1} x_{2} )}}} \right. \kern-0pt} {(x_{1} x_{2} )}} + 4940x_{3} - 80} \right) \hfill \\ {\text{subject to: }}g_{1} ({\mathbf{x}}) = 4.94x_{3} + {{0.00139} \mathord{\left/ {\vphantom {{0.00139} {(x_{1} x_{2} )}}} \right. \kern-0pt} {(x_{1} x_{2} )}} \le 1.08 \hfill \\ \, g_{2} ({\mathbf{x}}) = 1.082x_{3} + {{0.000306} \mathord{\left/ {\vphantom {{0.000306} {(x_{1} x_{2} )}}} \right. \kern-0pt} {(x_{1} x_{2} )}} \le 1.0986 \hfill \\ \, g_{3} ({\mathbf{x}}) = 49408.24x_{3} + {{12.307} \mathord{\left/ {\vphantom {{12.307} {(x_{1} x_{2} )}}} \right. \kern-0pt} {(x_{1} x_{2} )}} \le 54051.02 \hfill \\ \, g_{4} ({\mathbf{x}}) = 8046.33x_{3} + {{2.098} \mathord{\left/ {\vphantom {{2.098} {(x_{1} x_{2} )}}} \right. \kern-0pt} {(x_{1} x_{2} )}} \le 16696.71 \hfill \\ \, g_{5} ({\mathbf{x}}) = 7883.39x_{3} + {{2.138} \mathord{\left/ {\vphantom {{2.138} {(x_{1} x_{2} )}}} \right. \kern-0pt} {(x_{1} x_{2} )}} \le 10705.04 \hfill \\ \, g_{6} ({\mathbf{x}}) = 1721.26x_{3} + 0.417x_{1} x_{2} \le 2136.54 \hfill \\ \, g_{7} ({\mathbf{x}}) = 631.13x_{3} + {{0.164} \mathord{\left/ {\vphantom {{0.164} {(x_{1} x_{2} )}}} \right. \kern-0pt} {(x_{1} x_{2} )}} \le 604.48 \hfill \\ {\text{with 0}}{.01} \le x_{1} \le 0.45,{0}{\text{.01}} \le x_{2} ,x_{3} \le 0.1. \hfill \\ \end{gathered}$$

1.7 Bulk carriers design problem

$$\begin{gathered} {\text{Consider }}{\mathbf{x}} = [L,B,D,T,V_{k} ,C_{B} ] \hfill \\ {\text{Minimize }}f_{1} ({\mathbf{x}}) = {{(C_{c} + C_{r} + C_{v} )} \mathord{\left/ {\vphantom {{(C_{c} + C_{r} + C_{v} )} {C_{a} }}} \right. \kern-0pt} {C_{a} }} \hfill \\ \, f_{2} ({\mathbf{x}}) = W_{ls} \hfill \\ \, f_{3} ({\mathbf{x}}) = - C_{a} \hfill \\ {\text{subject to: }}g_{1} ({\mathbf{x}}) = - {L \mathord{\left/ {\vphantom {L B}} \right. \kern-0pt} B} + 6 \le 0 \hfill \\ \, g_{2} ({\mathbf{x}}) = {L \mathord{\left/ {\vphantom {L D}} \right. \kern-0pt} D} - 15 \le 0 \hfill \\ \, g_{3} ({\mathbf{x}}) = - {L \mathord{\left/ {\vphantom {L T}} \right. \kern-0pt} T} - 19 \le 0 \hfill \\ \, g_{4} ({\mathbf{x}}) = T - 0.45D_{wt}^{0.31} \le 0 \hfill \\ \, g_{5} ({\mathbf{x}}) = T - 0.7D - 0.7 \le 0 \hfill \\ \, g_{6} ({\mathbf{x}}) = F_{n} - 0.32 \le 0 \hfill \\ \, g_{7} ({\mathbf{x}}) = - 0.53T - {{((0.085C_{B} - 0.002)B^{2} )} \mathord{\left/ {\vphantom {{((0.085C_{B} - 0.002)B^{2} )} {(T \cdot C_{B} )}}} \right. \kern-0pt} {(T \cdot C_{B} )}} \hfill \\ \, + (1 + 0.52D) + 0.07B \le 0 \hfill \\ \, g_{8} ({\mathbf{x}}) = - D_{wt} + 3000 \le 0; \hfill \\ \, g_{9} ({\mathbf{x}}) = D_{wt} - 500000 \le 0 \hfill \\ {\text{where }}C_{c} = 2.6(2000W_{s}^{0.85} + 3500W_{o} + 2400P^{0.8} ); \hfill \\ \, C_{r} = 40000D_{wt}^{0.3} ; \, C_{v} = (105D_{c} S_{d} + 6.3D_{wt}^{0.8} )R_{tpa} ; \hfill \\ \, C_{a} = D_{cwt} R_{tpa} ; \, R_{tpa} = {{350} \mathord{\left/ {\vphantom {{350} {\left( {S_{d} + 2({{D_{cwt} } \mathord{\left/ {\vphantom {{D_{cwt} } {8000}}} \right. \kern-0pt} {8000}} + 0.5)} \right)}}} \right. \kern-0pt} {\left( {S_{d} + 2({{D_{cwt} } \mathord{\left/ {\vphantom {{D_{cwt} } {8000}}} \right. \kern-0pt} {8000}} + 0.5)} \right)}}; \hfill \\ \, D_{cwt} = D_{wt} - D_{c} (S_{d} + 5) - 2D_{wt}^{0.5} ; \, S_{d} = {{5000V_{k} } \mathord{\left/ {\vphantom {{5000V_{k} } {24}}} \right. \kern-0pt} {24}}; \hfill \\ \, D_{c} = {{0.19 \times 24P} \mathord{\left/ {\vphantom {{0.19 \times 24P} {1000}}} \right. \kern-0pt} {1000}} + 0.2; \, D_{wt} = 1.025L \cdot B \cdot T \cdot C_{B} - W_{ls} ; \hfill \\ \, W_{ls} = W_{s} + W_{o} + W_{m} ; \, W_{s} = 0.034L^{1.7} B^{0.7} D^{0.4} C_{B}^{0.5} ; \hfill \\ \, W_{o} = L^{0.8} B^{0.6} D^{0.3} C_{B}^{0.1} ; \, W_{m} = 0.17P^{0.9} ; \hfill \\ \, P = {{(1.025L \cdot B \cdot T \cdot C_{B} )^{{\tfrac{2}{3}}} V_{k}^{3} } \mathord{\left/ {\vphantom {{(1.025L \cdot B \cdot T \cdot C_{B} )^{{\tfrac{2}{3}}} V_{k}^{3} } {(a + b \cdot F_{n} )}}} \right. \kern-0pt} {(a + b \cdot F_{n} )}}; \hfill \\ \, F_{n} = {{0.5144V_{k} } \mathord{\left/ {\vphantom {{0.5144V_{k} } {(9.8065L)^{0.5} }}} \right. \kern-0pt} {(9.8065L)^{0.5} }}; \hfill \\ \, a = 4456.51 - 8105.61C_{B} + 4977.06C_{B}^{2} ; \hfill \\ \, b = - 6960.32 + 12817C_{B} - 10847.2C_{B}^{2} . \hfill \\ {\text{with 150}}{.0} \le L \le 274.32,{20}{\text{.0}} \le B \le 32.31, \hfill \\ { 13}{\text{.0}} \le D \le 25.0,10.0 \le T \le 11.71, \hfill \\ { 14}{\text{.0}} \le V_{k} \le 18.0,0.63 \le C_{B} \le 0.75. \hfill \\ \end{gathered}$$

1.8 Multi-product batch plant problem

$$\begin{gathered} {\text{Consider }}{\mathbf{x}} = [N_{1} ,N_{2} ,N_{3} ,V_{1} ,V_{2} ,V_{3} ,T_{L1} ,T_{L2} ,B_{1} ,B_{2} ] \hfill \\ {\text{Minimize }}f_{1} ({\mathbf{x}}) = \sum\limits_{j = 1}^{M} {\alpha_{j} N_{j} V_{j}^{{\beta_{j} }} } \hfill \\ \, f_{2} ({\mathbf{x}}) = 65\sum\limits_{i = 1}^{N} {\frac{{Q_{i} }}{{B_{i} }}} + 0.08Q_{1} + 0.1Q_{2} \hfill \\ \, f_{3} ({\mathbf{x}}) = \sum\limits_{i = 1}^{N} {\frac{{Q_{i} T_{Li} }}{{B_{i} }}} \hfill \\ {\text{subject to: }}g_{1} ({\mathbf{x}}) = f_{3} (\vec{x}) - H \le 0 \hfill \\ \, g_{2} ({\mathbf{x}}) = \sum\limits_{i = 1}^{N} {S_{ij} B_{i} - V_{j} } \le 0,j = 1,...,M \hfill \\ \, g_{3} ({\mathbf{x}}) = t_{ij} - N_{j} T_{Li} \le 0,i = 1,...,N;j = 1,...,M \hfill \\ {\text{where }}N = 2; \, M = 3; \, \alpha_{j} = 250; \, \beta_{j} = 0.6; \hfill \\ \, H = 6000; \, Q_{1} = 40000; \, Q_{2} = 20000; \hfill \\ \, S_{11} = 2; \, S_{12} = 3; \, S_{13} = 4; \hfill \\ \, S_{21} = 4; \, S_{22} = 6; \, S_{23} = 3; \hfill \\ \, t_{11} = 8; \, t_{12} = 20; \, t_{13} = 8; \hfill \\ \, t_{21} = 16; \, t_{22} = 4; \, t_{23} = 4. \hfill \\ {\text{with 1}} \le N_{1} ,N_{2} ,N_{3} \le 3({\text{integer}}),{250} \le V_{1} ,V_{2} ,V_{3} \le 2500, \hfill \\ { 6} \le T_{L1} \le 20,4 \le T_{L2} \le 16,{40} \le B_{1} \le 700,10 \le B_{2} \le 450. \hfill \\ \end{gathered}$$

Appendix 2. Pareto fronts obtained by all comparison algorithms

See Figs.

Fig. 20
figure 20

Speed reducer design problem

20,

Fig. 21
figure 21

Spring design problem

21,

Fig. 22
figure 22

Vibrating platform design problem

22,

Fig. 23
figure 23

Bulk carriers design problem

23,

Fig. 24
figure 24

Multi-product batch plant design problem

24,

Fig. 25
figure 25

72-bar 3D truss optimization problem

25,

Fig. 26
figure 26

200-bar 2D truss optimization problem

26,

Fig. 27
figure 27

942-bar 3D truss optimization problem

27

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Yin, S., Zhou, G. et al. Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems. Struct Multidisc Optim 66, 114 (2023). https://doi.org/10.1007/s00158-023-03568-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-023-03568-y

Keywords

Navigation