Skip to main content
Log in

Decoupling uncertainty quantification from robust design optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Robust design optimization (RDO) has been eminent in determining the optimal design of real-time complex systems under stochastic environment. Unlike conventional optimization, RDO involves uncertainty quantification which may render the procedure to be computationally intensive, if not prohibitive. In order to deal with such issues, an efficient approximation-based generalized RDO framework has been proposed. Since RDO formulation comprises of statistical terms of the performance functions, the proposed framework deals with approximation of those statistical quantities, rather than the performance functions. Consequently, the proposed framework allows transformation of the RDO problem to an equivalent deterministic one. As a result, unlike traditional surrogate-assisted RDO, the proposed framework yields desirable results in significantly less number of functional evaluations. For performing such response statistical approximation, two adaptive sparse refined Kriging-based computational models have been proposed. However, the generality of the proposed methodology allows any surrogate models to be employed within this framework, provided it is capable of capturing the functional non-linearity. Implementation of the proposed framework in three test examples and two finite element-based practical problems clearly illustrates its potential for further complicated applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Berg E, Friedlander M (2007) SPGL1: a solver for large-scale sparse reconstruction. http://www.cs.ubc.ca/labs/scl/spgl1

  • Berg E, Friedlander M (2008) Probing the Pareto frontier for basis pursuit solutions. SIAM J Sci Comput 31:890–912

    Article  MathSciNet  MATH  Google Scholar 

  • Beyer H-G, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharjya S (2010) Robust optimization of structures under uncertainty. PhD Thesis, Department of Civil Engineering, Bengal Engineering and Science University, Shibpur

  • Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230:2345–2367

    Article  MathSciNet  MATH  Google Scholar 

  • Blumensath T, Davies ME (2009) Iterative hard thresholding for compressed sensing. Appl Comput Harmon Anal 27:265–274

    Article  MathSciNet  MATH  Google Scholar 

  • Chakraborty S, Chowdhury R (2015) A semi-analytical framework for structural reliability analysis. Comput Methods Appl Mech Eng 289:475–497

    Article  MathSciNet  MATH  Google Scholar 

  • Chakraborty S, Bhattacharjya S, Haldar A (2012) Sensitivity importance-based robust optimization of structures with incomplete probabilistic information. Int J Numer Methods Eng 90:1261–1277

    Article  MATH  Google Scholar 

  • Chakraborty S, Chatterjee T, Chowdhury R, Adhikari S (2016) Robust design optimization for crashworthiness of vehicle side impact. ASCE-ASME J Risk Uncertain Eng Syst Part B Mech Eng 1–9. https://doi.org/10.1115/1.4035439

  • Chakraborty S, Chatterjee T, Chowdhury R, Adhikari S (2017) A surrogate based multi-fidelity approach for robust design optimization. Appl Math Model 47:726–744

    Article  MathSciNet  Google Scholar 

  • Chastaing G, Gamboa F, Prieur C (2012) Generalized hoeffding-sobol decomposition for dependent variables-application to sensitivity analysis. Electronic Journal of Statistics 6:2420–2448

  • Chatterjee T, Chowdhury R (2016) Adaptive bilevel approximation technique for multiobjective evolutionary optimization. J Comput Civ Eng 04016071(1–16). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000643

  • Chatterjee T, Chowdhury R (2017) An efficient sparse Bayesian learning framework for stochastic response analysis. Struct Saf 68:1–14

    Article  Google Scholar 

  • Chatterjee T, Chakraborty S, Chowdhury R (2016) A bi-level approximation tool for the computation of FRFs in stochastic dynamic systems. Mech Syst Signal Process 70-71:484–505

    Article  Google Scholar 

  • Chatterjee T, Chakraborty S, Chowdhury R (2017) A critical review of surrogate assisted robust design optimization. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-017-9240-5

  • Chen W, Allen J, Tsui K, Mistree F (1996) Procedure for robust design: minimizing variations caused by noise factors and control factors. J Mech Des Trans ASME 118:478–485

    Article  Google Scholar 

  • Chen S, Donoho D, Saunders M (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20:33–61

    Article  MathSciNet  MATH  Google Scholar 

  • Chen W, Wiecek M, Zhang J (1999) Quality utility—a compromise programming approach to robust design. J Mech Des ASME 121:179–187

    Article  Google Scholar 

  • Chen W, Sahai A, Messac A, Sundararaj G (2000) Exploration of the effectiveness of physical programming in robust design. J Mech Des ASME 122:155–163

    Article  Google Scholar 

  • Cheng J, Liu Z, Wu Z et al (2014) Robust optimization of structural dynamic characteristics based on adaptive Kriging model and CNSGA. Struct Multidiscip Optim 51:423–437

    Article  Google Scholar 

  • Combettes P, Wajs V (2005) Signal recovery by proximal forward-backward splitting. Multiscale Model Simul 4:1168–1200

    Article  MathSciNet  MATH  Google Scholar 

  • Dai W, Milenkovic O (2009) Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory 55:2230–2249

    Article  MathSciNet  MATH  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, New York, USA

    MATH  Google Scholar 

  • Deb K, Agarwal A, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • Deng J (2006) Structural reliability analysis for implicit performance function using radial basis function network. Int J Solids Struct 43:3255–3291

    Article  MATH  Google Scholar 

  • Diez M, Peri D (2010) Robust optimization for ship conceptual design. Ocean Eng 37:966–977

    Article  Google Scholar 

  • Doostan A, Iaccarino G (2009) A least-squares approximation of partial differential equations with high-dimensional random inputs. J Comput Phys 228:4332–4345

    Article  MathSciNet  MATH  Google Scholar 

  • Doostan A, Owhadi H (2011) A non-adapted sparse approximation of PDEs with stochastic inputs. J Comput Phys 230:3015–3034

    Article  MathSciNet  MATH  Google Scholar 

  • Du X, Chen W (2000) Towards a better understanding of modeling feasibility robustness in engineering design. J Mech Des Trans ASME 122:385–394

    Article  Google Scholar 

  • Du X, Sudjianto A, Chen W (2004) An integrated framework for optimization under uncertainty using inverse reliability strategy. J Mech Des 126:562–570

    Article  Google Scholar 

  • Dubourg V (2011) Adaptive surrogate models for reliability analysis and reliability-based design optimization. PhD thesis, Universite Blaise Pascal, Clermont-Ferrand, France

  • Dubourg V, Sudret B, Deheeger F (2013) Metamodel-based importance sampling for structural reliability analysis. Probabilistic Eng Mech 33:47–57

    Article  Google Scholar 

  • Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Struct Saf 33:145–154

    Article  Google Scholar 

  • Efron B, Tibshirani R (1997) Improvements on cross-validation: the .632+ bootstrap method. J Am Stat Assoc 92:548–560

    MathSciNet  MATH  Google Scholar 

  • Fang J, Gao Y, Sun G et al (2015) Multiobjective robust design optimization of fatigue life for a truck cab. Reliab Eng Syst Saf 135:1–8

    Article  Google Scholar 

  • Fonseca C, Fleming P (1995) Multiobjective genetic algorithms made easy: selection, sharing, and mating restriction. In: Proceedings of the 1st International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications. IET, pp 45–52

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Article  MathSciNet  MATH  Google Scholar 

  • Giunta A, Watson L, Koehler J (1998) A comparison of approximation modeling techniques: polynomial versus interpolating models. In: Proceedings of the seventh AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, AIAA-98-4758. pp 1–13

  • Han JS, Kwak BM (2004) Robust optimization using a gradient index: MEMS applications. Struct Multidiscip Optim 27:469–478

    Article  Google Scholar 

  • Huang B, Du X (2007) Analytical robustness assessment for robust design. Struct Multidiscip Optim 34:123–137

    Article  Google Scholar 

  • Jacquelin E, Adhikari S, Sinou J, Friswell MI (2014) Polynomial chaos expansion and steady-state response of a class of random dynamical systems. J Eng Mech 04014145(1–11)

  • Jin R, Chen W, Simpson T (2001) Comparative studies of metamodeling techniques under multiple modeling criteria. Struct Multidiscip Optim 23:1–13

    Article  Google Scholar 

  • Jin R, Du X, Chen W (2003) The use of metamodeling techniques for optimization under uncertainty. Struct Multidiscip Optim 25:99–116

    Article  Google Scholar 

  • Kersaudy P, Sudret B, Varsier N et al (2015) A new surrogate modeling technique combining Kriging and polynomial chaos expansions—application to uncertainty analysis in computational dosimetry. J Comput Phys 286:103–117

    Article  MathSciNet  MATH  Google Scholar 

  • Lagaros ND, Plevris V, Papadrakakis M (2007) Reliability based robust design optimization of steel structures. Int J Simul Multidiscip Des Optim 1:19–29

    Article  Google Scholar 

  • Lee K-H, Park G-J (2001) Robust optimization considering tolerances of design variables. Comput Struct 79:77–86

    Article  Google Scholar 

  • Li G, Rosenthal C, Rabitz H (2001) High dimensional model representation. J Phys Chem A 105:7765–7777

    Article  Google Scholar 

  • Lophaven S, Nielson H, Sondergaard J (2002) DACE A MATLAB Kriging Toolbox. IMM-TR-2002-12. Technical University of Denmark, Lyngby

    Google Scholar 

  • Marano GC, Greco R, Sgobba S (2010) A comparison between different robust optimum design approaches: application to tuned mass dampers. Probabilistic Eng Mech 25:108–118

    Article  Google Scholar 

  • Mareš T, Janouchová E, Kučerová A (2016) Artificial neural networks in the calibration of nonlinear mechanical models. Adv Eng Softw 95:68–81

    Article  Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2:239–245

    MathSciNet  MATH  Google Scholar 

  • Messac A (1996) Physical programming: effective optimization for computational design. AIAA J 34:149–158

    Article  MATH  Google Scholar 

  • Mortazavi A, Azarm S, Gabriel SA (2013) Adaptive gradient-assisted robust design optimization under interval uncertainty. Eng Optim 45:1287–1307

    Article  MathSciNet  Google Scholar 

  • Needell D, Tropp JA (2009) CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26(3):301–321

  • Osborne MR, Presnell B, B a T (2000) A new approach to variable selection in least squares problems. IMA J Numer Anal 20:389–403

    Article  MathSciNet  MATH  Google Scholar 

  • Patelli E, Broggi M, Angelis M de, Beer M (2014) OpenCossan: an efficient open tool for dealing with epistemic and aleatory uncertainties. In: Vulnerability, Uncertainty, and Risk, American Society of Civil Engineers, Reston, VA. pp 2564–2573

  • Pati YC, Rezaiifar R, Krishnaprasad PS (1993) Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Computers. pp 40–44

  • Ray T, Smith W (2006) A surrogate assisted parallel multiobjective evolutionary algorithm for robust engineering design. Eng Optim 38:997–1011

    Article  Google Scholar 

  • Regis RG (2014) Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions. IEEE Trans Evol Comput 18:326–347

    Article  Google Scholar 

  • Ren X, Rahman S (2013) Robust design optimization by polynomial dimensional decomposition. Struct Multidiscip Optim 48:127–148

    Article  MathSciNet  MATH  Google Scholar 

  • Roy BK, Chakraborty S (2015) Robust optimum design of base isolation system in seismic vibration control of structures under random system parameters. Struct Saf 55:49–59

    Article  Google Scholar 

  • Sacks J, Welch W, Mitchell T, Wynn H (1989) Design and analysis of computer experiments. Stat Sci 4:409–423

    Article  MathSciNet  MATH  Google Scholar 

  • Schuëller GI, Jensen H a (2008) Computational methods in optimization considering uncertainties—an overview. Comput Methods Appl Mech Eng 198:2–13

    Article  MATH  Google Scholar 

  • Shah H, Hosder S, Koziel S et al (2015) Multi-fidelity robust aerodynamic design optimization under mixed uncertainty. Aerosp Sci Technol 45:17–29

    Article  Google Scholar 

  • Shimoyama K, Lim JN, Jeong S, et al (2009) Practical implementation of robust design assisted by response surface approximation and visual data-mining. J Mech Des 131(6):061007. https://doi.org/10.1115/1.3125207

  • Sierra MR, Coello CAC (2005) Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In: Evolutionary Multi-Criterion Optimization Volume 3410 of the series Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp 505–519

    Google Scholar 

  • Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2:221–248

    Article  Google Scholar 

  • Sudret B (2012) Meta-models for structural reliability and uncertainty quantification. In: Proceedings of 5th Asian-Pacific Symposium on Structural Reliability and its Applications (APSSRA, 2012), Singapore. pp 53–76

  • Taguchi G (1986) Quality engineering through design optimization. Krauss International Publications, White Plains, NY

    Google Scholar 

  • Thanedar P, Arora J, Tseng C et al (1986) Performance of some SQP algorithms on structural design problems. Int J Numer Methods Eng 23:2187–2203

    Article  MATH  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc B 58:267–288

    MathSciNet  MATH  Google Scholar 

  • Xiu D, Karniadakis GE (2002) The Wiener--Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24:619–644

    Article  MathSciNet  MATH  Google Scholar 

  • Zang C, Friswell MI, Mottershead JE (2005) A review of robust optimal design and its application in dynamics. Comput Struct 83:315–326

    Article  Google Scholar 

  • Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731

    Article  Google Scholar 

  • Zhou H, Zhou Q, Liu C, Zhou T (2017) A kriging metamodel-assisted robust optimization method based on a reverse model. Eng Optim. https://doi.org/10.1080/0305215X.2017.1307355

  • Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms: a comparative case study. In: Parallel Problem Solving from Nature – PPSN V, vol. 1498 of Lecture Notes in Computer Science. Springer Belin/, Heidelberg, pp 292–301

    Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm. Tech. Rep. 103, Computer Engineering and Networks Laboratory (TIK), Department of Electrical Engineering, Swiss Federal Institute of Technology (ETH) Zurich

Download references

Acknowledgements

TC and RC acknowledge the support of CSIR via Grant No. 22(0712)/16/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Chatterjee.

Additional information

Responsible Editor: Junji Kato

Publisher’s Note

Springer Nature remains neutral withregard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Spectral projected gradient algorithm (SPGL1)

The SPGL1 algorithm utilized in this work has been adopted from (Berg and Friedlander 2008). The algorithm is dependent on projection of the solution of each iterations on the feasible set {α| ‖α1 ≤ τ}. This has been realized by the following operator as

$$ {\overline{P}}_{\tau}\left[{\mathbf{x}}^{\prime}\right]:\underset{\boldsymbol{\upalpha}}{\;\mathrm{argmin}\;}{\left\Vert {\mathbf{x}}^{\prime }-\boldsymbol{\upalpha} \right\Vert}_2\kern0.36em \mathrm{s}.\mathrm{t}.\kern0.48em {\left\Vert \boldsymbol{\upalpha} \right\Vert}_1\le \tau $$
(A.1)

which signify the projection of x onto the 1-norm with radius τ. The SPGL1 technique has been described in a sequential manner in algorithm A.1. It should be noted that each iteration of algorithm A.1 search for the projection gradient \( {\overline{P}}_{\tau}\left[{\boldsymbol{\upalpha}}_m-\beta {\mathbf{g}}_m^{\prime}\right] \), where \( {g}_m^{\prime } \) is the current gradient for \( {\left\Vert \boldsymbol{\uppsi} \boldsymbol{\upalpha} -\mathbf{d}\right\Vert}_2^2 \). The criterion utilized for the line search ensures reduction in the objective function in at least L number of iterations. For implementation, MATLAB® package SPGL1 (Berg and Friedlander 2007) has been employed here.

figure d

Appendix B. Description of the test problems investigated in section 5.1

1.1 B.1 Example 1: welded beam design

$$ \operatorname{Minimize}\kern1.44em f\left(\mathbf{x}\right)=1.10471{x}_1^2{x}_2+0.04811{x}_3{x}_4\left(14+{x}_2\right) $$
(B.1)
$$ {\displaystyle \begin{array}{l}\mathrm{s}.\mathrm{t}.\kern0.84em \\ {}\kern2.879999em {g}_1\left(\mathbf{x}\right)=t-{t}_{\mathrm{max}}\le 0\\ {}\kern2.879999em {g}_2\left(\mathbf{x}\right)=s-{s}_{\mathrm{max}}\le 0\\ {}\kern2.879999em {g}_3\left(\mathbf{x}\right)={x}_1-{x}_4\le 0\\ {}\kern2.879999em {g}_4\left(\mathbf{x}\right)=d-{d}_{\mathrm{max}}\le 0\\ {}\kern2.879999em {g}_5\left(\mathbf{x}\right)=P-{P}_c\le 0\end{array}} $$
(B.2)
$$ M=P\left(L+{x}_2/2\right) $$
(B.3)
$$ R=\sqrt{0.25\left({x}_2^2+{\left({x}_1+{x}_3\right)}^2\right)} $$
(B.4)
$$ J=\sqrt{2}{x}_1{x}_2\left({x}_2^2/12+0.25{\left({x}_1+{x}_3\right)}^2\right) $$
(B.5)
$$ {P}_c=64746.022\left(1-0.0282346{x}_3\right){x}_3{x}_4^3 $$
(B.6)
$$ {t}_1=P/\left(\sqrt{2}{x}_1{x}_2\right) $$
(B.7)
$$ {t}_2= MR/J $$
(B.8)
$$ t=\sqrt{t_1^2+{t}_1{t}_2{x}_2/R+{t}_2^2} $$
(B.9)
$$ S=6 PL/\left({x}_4{x}_3^2\right) $$
(B.10)
$$ d=2.1952/\left({x}_4{x}_3^3\right) $$
(B.11)
$$ {\displaystyle \begin{array}{l}P=6000,L=14,E=30\times {10}^6,G=12\times {10}^6,\\ {}{t}_{\mathrm{max}}=13600,{s}_{\mathrm{max}}=30000,{x}_{\mathrm{max}}=10,{d}_{\mathrm{max}}=0.25\\ {}0.125\le {x}_1\le 10,\kern0.72em 0.1\le {x}_i\le 10,\kern0.96em for\kern0.24em i=2,3,4.\end{array}} $$
(B.12)

1.2 B.2 Example 2: speed reducer

$$ \operatorname{Minimize}\kern2.28em f\left(\mathbf{x}\right)=0.7854{x}_1{x}_2^2A-1.508{x}_1B+7.477C+0.7854D $$
(B.13)
$$ {\displaystyle \begin{array}{l}\mathrm{where},\kern2.999999em A=3.3333{x}_3^2+14.9334{x}_3-43.0934\\ {}\kern4.679997em B={x}_6^2+{x}_7^2\\ {}\kern4.679997em C={x}_6^3+{x}_7^3\\ {}\kern4.679997em D={x}_4{x}_6^2+{x}_5{x}_7^2\end{array}} $$
(B.12)
$$ {\displaystyle \begin{array}{l}\mathrm{s}.\mathrm{t}.,\kern3.239999em {g}_1\left(\mathbf{x}\right)=\left(27-{x}_1{x}_2^2{x}_3\right)/27\le 0\\ {}\kern4.079998em {g}_2\left(\mathbf{x}\right)=\left(397.5-{x}_1{x}_2^2{x}_3^2\right)/397.5\le 0\\ {}\kern4.199998em {g}_3\left(\mathbf{x}\right)=\left(1.93-\left({x}_2{x}_6^4{x}_3\right)/{x}_4^3\right)/1.93\le 0\\ {}\kern4.199998em {g}_4\left(\mathbf{x}\right)=\left(1.93-\left({x}_2{x}_7^4{x}_3\right)/{x}_5^3\right)/1.93\le 0\\ {}\kern4.199998em {g}_5\left(\mathbf{x}\right)=\left(\left({A}_1/{B}_1\right)-1100\right)/1100\le 0\\ {}\kern4.199998em {g}_6\left(\mathbf{x}\right)=\left(\left({A}_2/{B}_2\right)-850\right)/850\le 0\\ {}\kern4.199998em {g}_7\left(\mathbf{x}\right)=\left({x}_2{x}_3-40\right)/40\le 0\\ {}\kern4.199998em {g}_8\left(\mathbf{x}\right)=\left(5-\left({x}_1/{x}_2\right)\right)/5\le 0\\ {}\kern4.199998em {g}_9\left(\mathbf{x}\right)=\left(\left({x}_1/{x}_2\right)-12\right)/12\le 0\\ {}\kern4.199998em {g}_{10}\left(\mathbf{x}\right)=\left(1.9+1.5{x}_6-{x}_4\right)/1.9\le 0\\ {}\kern4.199998em {g}_{11}\left(\mathbf{x}\right)=\left(1.9+1.1{x}_7-{x}_5\right)/1.9\le 0\end{array}} $$
(B.14)
$$ {\displaystyle \begin{array}{l}\mathrm{where},\kern1.92em {A}_1={\left[{\left(745{x}_4/\left({x}_2{x}_3\right)\right)}^2+\left(16.91\times {10}^6\right)\right]}^{0.5}\\ {}\kern3.599998em {B}_1=0.1{x}_6^3\\ {}\kern3.479999em {A}_2={\left[{\left(745{x}_5/\left({x}_2{x}_3\right)\right)}^2+\left(157.5\times {10}^6\right)\right]}^{0.5}\\ {}\kern3.479999em {B}_2=0.1{x}_7^3\end{array}} $$
(B.16)
$$ {\displaystyle \begin{array}{l}2.6\le {x}_1\le 3.6\\ {}0.7\le {x}_2\le 0.8\\ {}17\le {x}_3\le 28\\ {}7.3\le {x}_4,{x}_5\le 8.3\\ {}2.9\le {x}_6\le 3.9\\ {}5\le {x}_7\le 5.5\end{array}} $$
(B.17)

1.3 B.3 Example 3: vibrating platform

$$ {\displaystyle \begin{array}{l}\operatorname{minimize}\kern3.839998em \mathrm{cost}=2 bL\left({c}_1{t}_1+{c}_2{t}_2+{c}_3{t}_3\right)\\ {}\kern3.839998em \mathrm{and}\\ {}\operatorname{maximize}\kern3.599998em \mathrm{frequency}=\left(\frac{\pi }{2{L}^2}\right){\left(\frac{EI}{\mu}\right)}^{1/2}\end{array}} $$
(B.18)
$$ EI=\left(\frac{2b}{3}\right)\left[{E}_1{t}_1^3+{E}_2\left\{{\left({t}_1+{t}_2\right)}^3-{t}_1^3\right\}+{E}_3\left\{{\left({t}_1+{t}_2+{t}_3\right)}^3-{\left({t}_1+{t}_2\right)}^3\right\}\right] $$
(B.19)
$$ \mu =2b\left({\rho}_1{t}_1+{\rho}_2{t}_2+{\rho}_3{t}_3\right) $$
(B.20)
$$ 0\le {t}_1\le 0.5,0\le {t}_2\le 0.15,\mathrm{and}\kern0.24em 0\le {t}_3\le 0.05;\kern0.36em b=0.4m;L=4\;\mathrm{m} $$
(B.21)

Appendix C. Comparative assessment of the computational effort of proposed and conventional surrogate model-assisted RDO framework

In this section, a case study has been undertaken to compare the computational effort entailed by the proposed and conventional RDO framework. In doing so, the building frame problem previously executed as example 4 has been carried out. As the problem involves FE modelling, it will provide a realistic indication of the computational effort and thus, more relevant for the applicability of surrogate models. For a fair comparison, the proposed surrogate models PM1 and PM2 have been implemented in a conventional surrogate model-assisted RDO framework (HF approach) for solving the problem. The number of actual response evaluations have been presented in Table 12. It can be observed from Table 12 that the computational effort in terms of actual response evaluations utilized by proposed RDO framework is (2.5 × 105/4.95 × 105) = 50.5% in comparison to conventional HF-RDO framework.

Table 12 Comparison of the number of actual response evaluations (NARE) in conventional PM1/PM2-RDO and proposed PM1/PM2-RDO

In order to further investigate the performance of the proposed RDO framework in terms of CPU time as compared to the conventional surrogate-assisted RDO approach, the time of a single actual response evaluation is varied and other parameters such as ns1, ns2, nf − count, ns, and \( {n}_{\alpha_w} \) are kept as constant for the above building frame problem. From the following figure (Fig. 11), it can be observed that the proposed framework utilizes 47.5–50.5% computational effort in terms of CPU time as compared to the conventional HF approach varying the time of an actual response from 1 to 1200 s.

Fig. 11
figure 11

Comparison of computational effort in terms of CPU time required by the proposed RDO framework to that of conventional approach varying the time of one actual response evaluation from 1 to 1200 s, keeping other parameters ns1, ns2, nf − count, ns, and \( {n}_{\alpha_w} \)constant for the building frame problem (example 4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, T., Chowdhury, R. & Ramu, P. Decoupling uncertainty quantification from robust design optimization. Struct Multidisc Optim 59, 1969–1990 (2019). https://doi.org/10.1007/s00158-018-2167-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-2167-0

Keywords

Navigation