Skip to main content

Overview of Problem Formulations and Optimization Algorithms in the Presence of Uncertainty

  • Chapter
  • First Online:
Aerospace System Analysis and Optimization in Uncertainty

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 156))

Abstract

Optimization under uncertainty is a key problem in order to solve complex system design problem while taking into account inherent physical stochastic phenomena, lack of knowledge, modeling simplifications, etc. Different reviews of optimization techniques in the presence of uncertainty can be found in the literature. The choice of the algorithm is often problem-dependent. The designer has to choose firstly the optimization problem formulation with respect to the system specifications and study but also the optimization algorithm to apply. The objective of this chapter is to present the different existing approaches to solve an optimization problem under uncertainty and to focus specifically on the uncertainty handling mechanisms. The chapter is organized as follows. Firstly, in Section 5.1, different optimization problem formulations are introduced, highlighting the importance of uncertainty measures and the distinctions between robustness-based formulation, reliability-based formulation, and robustness-and-reliability-based formulation. Then, in Section 5.2, different approaches to quantify the uncertainty in optimization are discussed. Finally, in the Section 5.3, an overview of optimization algorithms is presented with a focus on stochastic gradient, population-based algorithms, and surrogate-based approaches. For each type of algorithms the handling of uncertainty is analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, H., Renaud, J., and Preston, E. (2003). Trust region managed reliability based design optimization using evidence theory. In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Northfolk, VA, USA.

    Google Scholar 

  • Aizawa, A. and Wah, B. (1994). Scheduling of genetic algorithms in a noisy environment. Evolutionary Computation, 2(2):97–122.

    Google Scholar 

  • Aizawa, A. N. and Wah, B. W. (1993). Dynamic control of genetic algorithms in a noisy environment. In Fifth International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA.

    Google Scholar 

  • Alyanak, E., Grandhi, R., and Bae, H.-R. (2008). Gradient projection for reliability-based design optimization using evidence theory. Engineering Optimization, 40(10):923–935.

    Google Scholar 

  • Andrieu, L. (2004). Optimisation sous contrainte en probabilité (in French). PhD thesis, Ecole des Ponts ParisTech.

    Google Scholar 

  • Andrieu, L., Cohen, G., and Vázquez-Abad, F. J. (2007). Stochastic programming with probability constraints. arXiv preprint arXiv:0708.0281.

    Google Scholar 

  • Andrieu, L., Cohen, G., and Vázquez-Abad, F. J. (2011). Gradient-based simulation optimization under probability constraints. European Journal of Operational Research, 212(2):345–351.

    MathSciNet  MATH  Google Scholar 

  • Arnaud, R. (2014). Etude d’un problème d’optimisation en aéroélasticité avec incertitudes (in French). PhD thesis, Ecole Centrale Paris.

    Google Scholar 

  • Arnaud, R. and Poirion, F. (2014). Optimization of an uncertain aeroelastic system using stochastic gradient approaches. Journal of Aircraft, 51(3):1061–1066.

    Google Scholar 

  • Arnold, D. V. (2001). Evolution strategies in noisy environments—a survey of existing work. In Theoretical aspects of evolutionary computing, pages 239–249. Springer.

    Google Scholar 

  • Arnold, D. V. and Beyer, H.-G. (2002). Noisy optimization with evolution strategies, volume 8. Springer Science & Business Media.

    Google Scholar 

  • Arrow, K. J., Hurwicz, L., and Uzawa, H. (1958). Studies in linear and non-linear programming. Cambridge Univ. Press.

    MATH  Google Scholar 

  • Audet, C., Booker, A. J., Dennis Jr, J. E., Frank, P. D., and Moore, D. W. (2000). A surrogate-model-based method for constrained optimization. In 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, USA.

    Google Scholar 

  • Auger, A. and Hansen, N. (2012). Tutorial CMA-ES: evolution strategies and covariance matrix adaptation. In 14th International Conference on Genetic and Evolutionary Computation (GECCO’ 12), Philadelphia, PA, USA.

    Google Scholar 

  • Auger, A., Hansen, N., Zerpa, J. P., Ros, R., and Schoenauer, M. (2009). Experimental comparisons of derivative free optimization algorithms. In International Symposium on Experimental Algorithms, Dortmund, Germany.

    Google Scholar 

  • Bäck, T., Foussette, C., and Krause, P. (2013). Contemporary evolution strategies. Springer.

    MATH  Google Scholar 

  • Bartz-Beielstein, T., Blum, D., and Branke, J. (2007). Particle swarm optimization and sequential sampling in noisy environments. In Metaheuristics, pages 261–273. Springer.

    Google Scholar 

  • Beck, A. T., Gomes, W. J., Lopez, R. H., and Miguel, L. F. (2015). A comparison between robust and risk-based optimization under uncertainty. Structural and Multidisciplinary Optimization, 52(3):479–492.

    MathSciNet  Google Scholar 

  • Beyer, H.-G. (2000). Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Computer methods in applied mechanics and engineering, 186(2):239–267.

    MATH  Google Scholar 

  • Boussaïd, I., Lepagnot, J., and Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237:82–117.

    MathSciNet  MATH  Google Scholar 

  • Branke, J. (1998). Creating robust solutions by means of evolutionary algorithms. In Eiben, A., Back, T., Schoenauer, M., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature, PPSN V, volume 1498 of Lecture Notes in Computer Science, pages 119–128. Springer Berlin Heidelberg.

    Google Scholar 

  • Branke, J., Chick, S. E., and Schmidt, C. (2005). New developments in ranking and selection: an empirical comparison of the three main approaches. In 37th conference on Winter simulation, Orlando, FL, USA.

    Google Scholar 

  • Branke, J. and Schmidt, C. (2003). Selection in the presence of noise. In Genetic and Evolutionary Computation Conference (GECCO’ 2003), Chicago, IL, USA, pages 766–777. Springer.

    Google Scholar 

  • Branke, J., Schmidt, C., and Schmeck, H. (2001). Efficient fitness estimation in noisy environments. In 3rd Annual Conference on Genetic and Evolutionary Computation, San Francisco, CA, USA.

    Google Scholar 

  • Cantú-Paz, E. (2004). Adaptive sampling for noisy problems. In Deb, K., editor, Genetic and Evolutionary Computation, GECCO 2004, volume 3102 of Lecture Notes in Computer Science, pages 947–958. Springer Berlin Heidelberg.

    Google Scholar 

  • Cao, L., Liu, J., Han, X., Jiang, C., and Liu, Q. (2018). An efficient evidence-based reliability analysis method via piecewise hyperplane approximation of limit state function. Structural and Multidisciplinary Optimization, pages 1–13.

    Google Scholar 

  • Chocat, R., Brevault, L., Balesdent, M., and Defoort, S. (2015). Modified Covariance Matrix Adaptation–Evolution Strategy algorithm for constrained optimization under uncertainty, application to rocket design. International Journal for Simulation and Multidisciplinary Design Optimization, 6:A1.

    Google Scholar 

  • Choi, K., Du, L., and Youn, B. (2004). A new fuzzy analysis method for possibility-based design optimization. In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, USA.

    Google Scholar 

  • Choi, K. K., Du, L., and Youn, B. D. (2005). Integration of reliability-and possibility-based design optimizations using performance measure approach. Technical report, SAE Technical Paper.

    Google Scholar 

  • Cochocki, A. and Unbehauen, R. (1993). Neural networks for optimization and signal processing. John Wiley & Sons, Inc.

    Google Scholar 

  • Coello, C. A. C. and Montes, E. M. (2002). Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics, 16(3):193–203.

    Google Scholar 

  • Cohen, G. and Culioli, J.-C. (1994). Optimisation stochastique sous contraintes en espérance (in French). Rapport interne Centre Automatique et Systèmes, Ecole des Mines de Paris.

    Google Scholar 

  • Cramer, A. M., Sudhoff, S. D., and Zivi, E. L. (2009). Evolutionary algorithms for minimax problems in robust design. IEEE Transactions on Evolutionary Computation, 13(2):444–453.

    Google Scholar 

  • Cui, X., Hardin, C. T., Ragade, R. K., Potok, T. E., and Elmaghraby, A. S. (2005). Tracking non-stationary optimal solution by particle swarm optimizer. In 6th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless Networks, Towson, MD, USA. IEEE.

    Google Scholar 

  • Davis, L. (1991). Handbook of genetic algorithms. Van Nostrand Reinhold Co., New York, USA.

    Google Scholar 

  • Désidéri, J.-A. (2014). Multiple-gradient descent algorithm for pareto-front identification. In Modeling, Simulation and Optimization for Science and Technology, pages 41–58. Springer.

    Google Scholar 

  • Di Pietro, A., While, R. L., and Barone, L. (2004). Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions. In IEEE Congress on Evolutionary Computation, Portland, RO, USA.

    Google Scholar 

  • Du, D.-Z. and Pardalos, P. M. (1995). Minimax and applications. Springer.

    MATH  Google Scholar 

  • Du, L., Choi, K. K., and Youn, B. D. (2006a). Inverse possibility analysis method for possibility-based design optimization. AIAA Journal, 44(11):2682–2690.

    Google Scholar 

  • Du, L., Choi, K. K., Youn, B. D., and Gorsich, D. (2006b). Possibility-based design optimization method for design problems with both statistical and fuzzy input data. Journal of Mechanical Design, 128(4):928–935.

    Google Scholar 

  • Fan, S., Jiang, C., Zhang, Z., and Liu, J. (2016). A reliability-based design optimization method for structures using evidence theory. Scientia Sinica Technologica, 46(7):706–716.

    Google Scholar 

  • Fitzpatrick, J. M. and Grefenstette, J. J. (1988). Genetic algorithms in noisy environments. Machine learning, 3(2–3):101–120.

    Google Scholar 

  • Forrester, A., Sobester, A., and Keane, A. (2008). Engineering design via surrogate modelling: a practical guide. John Wiley & Sons.

    Google Scholar 

  • Forrester, A. I. and Keane, A. J. (2009). Recent advances in surrogate-based optimization. Progress in aerospace sciences, 45(1–3):50–79.

    Google Scholar 

  • Gabrel, V., Murat, C., and Thiele, A. (2014). Recent advances in robust optimization: An overview. European Journal of Operational Research, 235(3):471–483.

    MathSciNet  MATH  Google Scholar 

  • Gardner, W. (1984). Learning characteristics of stochastic-gradient-descent algorithms: A general study, analysis, and critique. Signal Processing, 6(2):113–133.

    MathSciNet  Google Scholar 

  • Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.

    Google Scholar 

  • Goldberg, D. E., Deb, K., and Clark, J. H. (1991). Genetic algorithms, noise, and the sizing of populations. Complex Systems, 6:333–362.

    MATH  Google Scholar 

  • Gutmann, H.-M. (2001). A radial basis function method for global optimization. Journal of Global Optimization, 19(3):201–227.

    MathSciNet  MATH  Google Scholar 

  • Hansen, E. and Walster, G. W. (2003). Global optimization using interval analysis: revised and expanded. CRC Press.

    Google Scholar 

  • Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003). Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary computation, 11(1):1–18.

    Google Scholar 

  • Hansen, N., Niederberger, A., Guzzella, L., and Koumoutsakos, P. (2009a). A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Transactions on Evolutionary Computation, 13(1):180–197.

    Google Scholar 

  • Hansen, N., Niederberger, A. S., Guzzella, L., and Koumoutsakos, P. (2009b). A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Transactions on Evolutionary Computation, 13(1):180–197.

    Google Scholar 

  • Hansen, N., Ostermeier, A., and Gawelczyk, A. (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. In 6th International Conference on Genetic Algorithms, Pittsburgh, PA, USA.

    Google Scholar 

  • He, L.-P., Huang, H.-Z., Du, L., Zhang, X.-D., and Miao, Q. (2007). A review of possibilistic approaches to reliability analysis and optimization in engineering design. In International Conference on Human-Computer Interaction, pages 1075–1084. Springer.

    Google Scholar 

  • Himmelblau, D. M. (1972). Applied nonlinear programming. McGraw-Hill Companies.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press.

    MATH  Google Scholar 

  • Huang, D., Allen, T. T., Notz, W., and Zheng, N. (2006). Global optimization of stochastic black-box systems via sequential Kriging meta-models. Journal of Global Optimization, 34(3):441–466.

    MathSciNet  MATH  Google Scholar 

  • Huang, H.-Z., He, L., Liu, Y., Xiao, N.-C., Li, Y.-F., and Wang, Z. (2013). Possibility and evidence-based reliability analysis and design optimization. American Journal of Engineering and Applied Sciences, 6:95–136.

    Google Scholar 

  • Huang, Z., Jiang, C., Zhang, Z., Fang, T., and Han, X. (2017). A decoupling approach for evidence-theory-based reliability design optimization. Structural and Multidisciplinary Optimization, 56(3):647–661.

    Google Scholar 

  • Janusevskis, J. and Le Riche, R. (2013). Simultaneous kriging-based estimation and optimization of mean response. Journal of Global Optimization, 55(2):313–336.

    MathSciNet  MATH  Google Scholar 

  • Jin, Y. and Branke, J. (2005). Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on evolutionary computation, 9(3):303–317.

    Google Scholar 

  • Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21(4):345–383.

    MathSciNet  MATH  Google Scholar 

  • Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4):455–492.

    MathSciNet  MATH  Google Scholar 

  • Kang, Q., Xiong, C., Zhou, M., and Meng, L. (2018). Opposition-based hybrid strategy for particle swarm optimization in noisy environments. IEEE Access, 6:21888–21900.

    Google Scholar 

  • Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning, pages 760–766. Springer.

    Google Scholar 

  • Klamroth, K., Köbis, E., Schöbel, A., and Tammer, C. (2017). A unified approach to uncertain optimization. European Journal of Operational Research, 260(2):403–420.

    MathSciNet  MATH  Google Scholar 

  • Kushner, H. J. (1964). A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of Fluids Engineering, 86(1):97–106.

    Google Scholar 

  • Laguna, M. and Martí, R. (2005). Experimental testing of advanced scatter search designs for global optimization of multimodal functions. Journal of Global Optimization, 33(2):235–255.

    MathSciNet  MATH  Google Scholar 

  • Le Riche, R., Picheny, V., Meyer, A., Kim, N.-H., and Ginsbourger, D. (2009). Gears design with shape uncertainties using controlled Monte Carlo simulations and kriging. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, USA.

    Google Scholar 

  • Lelièvre, N., Beaurepaire, P., Mattrand, C., Gayton, N., and Otsmane, A. (2016). On the consideration of uncertainty in design: optimization-reliability-robustness. Structural and Multidisciplinary Optimization, 54(6):1423–1437.

    MathSciNet  Google Scholar 

  • Lung, R. I. and Dumitrescu, D. (2011). A new evolutionary approach to minimax problems. In 2011 IEEE Congress on Evolutionary Computation (CEC), New Orleans, LA, USA.

    Google Scholar 

  • Markon, S., Arnold, D. V., Back, T., Beielstein, T., and Beyer, H.-G. (2001). Thresholding-a selection operator for noisy ES. In 2001 IEEE Congress on Evolutionary Computation (CEC), Seoul, South Korea.

    Google Scholar 

  • Marzat, J., Walter, E., and Piet-Lahanier, H. (2013). Worst-case global optimization of black-box functions through kriging and relaxation. Journal of Global Optimization, 55(4):707–727.

    MathSciNet  MATH  Google Scholar 

  • Mercier, Q. (2018). Optimisation multicritere sous incertitudes : un algorithme de descente stochastique (in French). PhD thesis, Université Sofia Antipolis.

    Google Scholar 

  • Mercier, Q., Poirion, F., and Désidéri, J.-A. (2018). A stochastic multiple gradient descent algorithm. European Journal of Operational Research, 271(3):808–871.

    MathSciNet  MATH  Google Scholar 

  • Mezura-Montes, E. and Flores-Mendoza, J. (2008). Multiobjective problems solving from nature: From concepts to applications. Nature-Inspired Algorithms for Optimization, Studies in Computational Intelligence Series, Ch. Improved Particle Swarm Optimization in Constrained Numerical Search Spaces, pages 978–3.

    Google Scholar 

  • Miller, B. L. and Goldberg, D. E. (1996). Genetic algorithms, selection schemes, and the varying effects of noise. Evolutionary computation, 4(2):113–131.

    Google Scholar 

  • Miller, B. L., Goldberg, D. E., et al. (1995). Genetic algorithms, tournament selection, and the effects of noise. Complex systems, 9(3):193–212.

    MathSciNet  Google Scholar 

  • Mirjalili, S. and Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95:51–67.

    Google Scholar 

  • Mourelatos, Z. P. and Zhou, J. (2005). Reliability estimation and design with insufficient data based on possibility theory. AIAA Journal, 43(8):1696–1705.

    Google Scholar 

  • Mourelatos, Z. P. and Zhou, J. (2006). A design optimization method using evidence theory. Journal of Mechanical Design, 128(4):901–908.

    Google Scholar 

  • Nabil, E. (2016). A modified flower pollination algorithm for global optimization. Expert Systems with Applications, 57:192–203.

    Google Scholar 

  • Pal, S. K., Rai, C., and Singh, A. P. (2012). Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems. International Journal of intelligent systems and applications, 4(10):50.

    Google Scholar 

  • Pan, H., Wang, L., and Liu, B. (2006). Particle swarm optimization for function optimization in noisy environment. Applied Mathematics and Computation, 181(2):908, 919.

    Google Scholar 

  • Papadrakakis, M., Lagaros, N. D., and Plevris, V. (2005). Design optimization of steel structures considering uncertainties. Engineering Structures, 27(9):1408–1418.

    MATH  Google Scholar 

  • Parr, J. M., Keane, A. J., Forrester, A. I. J., and Holden, C. M. E. (2012). Infill sampling criteria for surrogate-based optimization with constraint handling. Engineering Optimization, 44(10):1147–1166.

    MATH  Google Scholar 

  • Parsopoulos, K. E. and Vrahatis, M. N. (2001). Particle swarm optimizer in noisy and continuously changing environments. In M.H. Hamza (Ed.), Artificial Intelligence and Soft Computing, pages 289–294.

    Google Scholar 

  • Picheny, V. and Ginsbourger, D. (2014). Noisy kriging-based optimization methods: a unified implementation within the DiceOptim package. Computational Statistics & Data Analysis, 71:1035–1053.

    MathSciNet  MATH  Google Scholar 

  • Picheny, V., Ginsbourger, D., Richet, Y., and Caplin, G. (2013a). Quantile-based optimization of noisy computer experiments with tunable precision. Technometrics, 55(1):2–13.

    MathSciNet  Google Scholar 

  • Picheny, V., Wagner, T., and Ginsbourger, D. (2013b). A benchmark of kriging-based infill criteria for noisy optimization. Structural and Multidisciplinary Optimization, 48(3):607–626.

    Google Scholar 

  • Pulido, G. T. and Coello, C. A. C. (2004). A constraint-handling mechanism for particle swarm optimization. In 2004 IEEE Congress on Evolutionary Computation (CEC), Portland, OR, USA.

    Google Scholar 

  • Rada-Vilela, J., Johnston, M., and Zhang, M. (2014). Population statistics for particle swarm optimization: Resampling methods in noisy optimization problems. Swarm and Evolutionary Computation, 17:37–59.

    Google Scholar 

  • Rada-Vilela, J., Johnston, M., and Zhang, M. (2015). Population statistics for particle swarm optimization: Hybrid methods in noisy optimization problems. Swarm and Evolutionary Computation, 22:15–29.

    Google Scholar 

  • Rakshit, P., Konar, A., and Das, S. (2017). Noisy evolutionary optimization algorithms–a comprehensive survey. Swarm and Evolutionary Computation, 33:18–45.

    Google Scholar 

  • Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability, 1(2):127–190.

    MathSciNet  MATH  Google Scholar 

  • Rudolph, G. (1998). Evolutionary search for minimal elements in partially ordered finite sets. In 7th International Conference on Evolutionary Programming, San Diego, CA, USA.

    Google Scholar 

  • Runarsson, T. P. and Yao, X. (2000). Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on evolutionary computation, 4(3):284–294.

    Google Scholar 

  • Rustem, B. and Howe, M. (2009). Algorithms for worst-case design and applications to risk management. Princeton University Press.

    MATH  Google Scholar 

  • Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers Chemical Engineering, 28(6):971–983. FOCAPO 2003 Special issue.

    Google Scholar 

  • Salehghaffari, S., Rais-Rohani, M., Marin, E., and Bammann, D. (2013). Optimization of structures under material parameter uncertainty using evidence theory. Engineering Optimization, 45(9):1027–1041.

    Google Scholar 

  • Sasena, M. J., Papalambros, P. Y., and Goovaerts, P. (2001). The use of surrogate modeling algorithms to exploit disparities in function computation time within simulation-based optimization. In Proceedings of the 4th Congress on Structural and Multidisciplinary Optimization, Dalian, China, 2001.

    Google Scholar 

  • Sasena, M. K. (2002). Flexibility and Efficiency enhancements for constrained global design optimization with Kriging approximation. PhD thesis, University of Michigan.

    Google Scholar 

  • Schlüter, M. and Gerdts, M. (2010). The oracle penalty method. Journal of Global Optimization, 47(2):293–325.

    MathSciNet  MATH  Google Scholar 

  • Schonlau, M., Welch, W. J., and Jones, D. (1996). Global optimization with nonparametric function fitting. Proceedings of the American Statistical Association’s on physical and engineering sciences, pages 183–186.

    Google Scholar 

  • Schonlau, M., Welch, W. J., and Jones, D. R. (1998). Global versus local search in constrained optimization of computer models. Lecture Notes-Monograph Series, pages 11–25.

    Google Scholar 

  • Schwefel, H.-P. and Rudolph, G. (1995). Contemporary evolution strategies. In European conference on artificial life, pages 891–907. Springer.

    Google Scholar 

  • Shimizu, K. and Aiyoshi, E. (1980). Necessary conditions for min-max problems and algorithms by a relaxation procedure. IEEE Transactions on Automatic Control, 25(1):62–66.

    MathSciNet  MATH  Google Scholar 

  • Srivastava, R. K. and Deb, K. (2011). An EA-based approach to design optimization using evidence theory. In 13th annual conference on Genetic and evolutionary computation, Dublin, Ireland.

    Google Scholar 

  • Stagge, P. (1998). Averaging efficiently in the presence of noise. In Eiben, A., Back, T., Schoenauer, M., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature, volume 1498 of Lecture Notes in Computer Science, pages 188–197. Springer Berlin Heidelberg.

    Google Scholar 

  • Su, Y., Tang, H., Xue, S., and Li, D. (2016). Multi-objective differential evolution for truss design optimization with epistemic uncertainty. Advances in Structural Engineering, 19(9):1403–1419.

    Google Scholar 

  • Talbi, E.-G. (2009). Metaheuristics: from design to implementation, volume 74. John Wiley & Sons.

    MATH  Google Scholar 

  • Toropov, V. V., Schramm, U., Sahai, A., Jones, R. D., and Zeguer, T. (2005). Design optimization and stochastic analysis based on the moving least squares method. 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil.

    Google Scholar 

  • Tsoukalas, A., Rustem, B., and Pistikopoulos, E. N. (2009). A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problems. Journal of Global Optimization, 44(2):235–250.

    MathSciNet  MATH  Google Scholar 

  • Ur Rehman, S. and Langelaar, M. (2015). Efficient global robust optimization of unconstrained problems affected by parametric uncertainties. Structural and Multidisciplinary Optimization, 52(2):319–336.

    MathSciNet  Google Scholar 

  • Vallejo, M. and Corne, D. W. (2016). Evolutionary algorithms under noise and uncertainty: a location-allocation case study. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece.

    Google Scholar 

  • Yao, W., Chen, X., Luo, W., van Tooren, M., and Guo, J. (2011). Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Progress in Aerospace Sciences, 47(6):450–479.

    Google Scholar 

  • Yin, H., Yu, D., Yin, S., and Xia, B. (2018). Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters. Mechanical Systems and Signal Processing, 102:329–345.

    Google Scholar 

  • Zhang, J., Xiao, M., Gao, L., Qiu, H., and Yang, Z. (2018). An improved two-stage framework of evidence-based design optimization. Structural and Multidisciplinary Optimization, pages 1–21.

    Google Scholar 

  • Zhou, A. and Zhang, Q. (2010). A surrogate-assisted evolutionary algorithm for minimax optimization. In 2010 IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain.

    Google Scholar 

  • Zhou, J. and Mourelatos, Z. P. (2006). A sequential algorithm for possibility-based design optimization. In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Balesdent .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balesdent, M., Brevault, L., Morio, J., Chocat, R. (2020). Overview of Problem Formulations and Optimization Algorithms in the Presence of Uncertainty. In: Aerospace System Analysis and Optimization in Uncertainty. Springer Optimization and Its Applications, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-030-39126-3_5

Download citation

Publish with us

Policies and ethics