Skip to main content
Log in

Strength-based topology optimisation of plastic isotropic von Mises materials

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Conventionally, topology optimisation is formulated as a non-linear optimisation problem, where the material is distributed in a manner which maximises the stiffness of the structure. Due to the nature of non-linear, non-convex optimisation problems, a multitude of local optima will exist and the solution will depend on the starting point. Moreover, while stress is an essential consideration in topology optimisation, accounting for the stress locally requires a large number of constraints to be considered in the optimisation problem; therefore, global methods are often deployed to alleviate this with less control of the stress field as a consequence. In the present work, a strength-based formulation with stress-based elements is introduced for plastic isotropic von Mises materials. The formulation results in a convex optimisation problem which ensures that any local optimum is the global optimum, and the problems can be solved efficiently using interior point methods. Four plane stress elements are introduced and several examples illustrate the strength of the convex stress-based formulation including mesh independence, rapid convergence and near-linear time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anderheggen E, Knöpfel H (1972) Finite element limit analysis using linear programming. Int J Solids Struct 8:1413–1431

    Article  MATH  Google Scholar 

  • Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program 95(2):249–277

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP (1995) Optimization of structural topology, shape, and material, vol 414. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bisbos C, Pardalos P (2007) Second-order cone and semidefinite representations of material failure criteria. J Optim Theory Appl 134(2):275–301

    Article  MathSciNet  MATH  Google Scholar 

  • Borges LA, Zouain N, Huespe AE (1996) A nonlinear optimization procedure for limit analysis. Eur J Mech Ser A Solids 15:487–512

    MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Bruggi M, Duysinx P (2013) A stress–based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidiscip Optim 48(2):311–326

    Article  MathSciNet  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Dorn WS, Gomory RE, Greenberg HJ (1964) Automatic design of optimal structures. J Mecanique 3:25–52

    Google Scholar 

  • Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distribution. In: Proceedings of the 7th AIAA/USAF/NASAISSMO symposium on multidisciplinary analysis and optimization, vol 1, pp 1501–1509

  • Duysinx P, Van Miegroet L, Lemaire E, Brüls O, Bruyneel M (2008) Topology and generalized shape optimization: why stress constraints are so important? Int J Simul Multidiscip Des Optim 2(4):253–258

    Article  Google Scholar 

  • Engwirda D (2014) Locally optimal delaunay-refinement and optimisation-based mesh generation. Ph.D. thesis. University of Sydney

  • Haftka RT, Grandhi RV (1986) Structural shape optimization—a survey. Comput Methods Appl Mech Eng 57(1):91–106

    Article  MathSciNet  MATH  Google Scholar 

  • Hegemier G, Prager W (1969) On Michell trusses. Int J Mech Sci 11(2):209–215

    Article  MATH  Google Scholar 

  • Herfelt MA, Poulsen PN, Hoang LC, Jensen JF (2017) Lower bound equilibrium element and submodel for shear joints in precast concrete structures. Eng Struct 135:1–9

    Article  Google Scholar 

  • Kammoun Z, Smaoui H (2014) A direct approach for continuous topology optimization subject to admissible loading. C R Mec 342(9):520–531

    Article  Google Scholar 

  • Karmarkar N (1984) A new polynomial-time algorithm for linear programming. Combinatorica 4:373–395

    Article  MathSciNet  MATH  Google Scholar 

  • Kohn RV, Strang G (1986) Optimal design and relaxation of variational problems, i. Commun Pure Appl Math 39(1):113–137

    Article  MathSciNet  MATH  Google Scholar 

  • Krabbenhøft K (2016) Shell finite element. Optum Computational Engineering

  • Krabbenhøft K, Lyamin A, Sloan S (2007) Formulation and solution of some plasticity problems as conic programs. Int J Solids Struct 44(5):1533–1549

    Article  MATH  Google Scholar 

  • Lobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Applications of second-order cone programming. Linear Algebra Appl 284(1):193–228

    Article  MathSciNet  MATH  Google Scholar 

  • Lyamin AV, Sloan SW (2002) Upper bound limit analysis using linear finite elements and non-linear programming. Int J Numer Anal Methods Geomech 26(2):181–216

    Article  MATH  Google Scholar 

  • Makrodimopoulos A, Martin C (2006) Lower bound limit analysis of cohesive-frictional materials using second-order cone programming. Int J Numer Methods Eng 66(4):604–634

    Article  MATH  Google Scholar 

  • Makrodimopoulos A, Martin C (2007) Upper bound limit analysis using simplex strain elements and second-order cone programming. Int J Numer Anal Methods Geomech 31(6):835–865

    Article  MATH  Google Scholar 

  • Michell AGM (1904) Lviii. The limits of economy of material in frame-structures. Lond Edinb Dublin Philos Mag J Sci 8(47):589–597

    Article  MATH  Google Scholar 

  • MOSEK ApS: MOSEK MATLAB toolbox. Release 8.0.0.81 (2017). Available at https://www.mosek.com/

  • Nemhauser GL, Wolsey LA (1992) Integer programming and combinatorial optimization. Wiley, Chichester

    MATH  Google Scholar 

  • Nemhauser GL, Savelsbergh M W P, Sigismondi G S (1988) Constraint classification for mixed integer programming formulations. COAL Bull 20:8–12

    Google Scholar 

  • Nesterov Y, Nemirovsky A (1988) A general approach to polynomial-time algorithms design for convex programming. Report, Central Economical and Mathematical Institute, USSR Academy of Sciences, Moscow

  • Olhoff N, Taylor J (1983) On structural optimization. J Appl Mech 50(4b):1139–1151

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen P (1998) Some general optimal design results using anisotropic, power law nonlinear elasticity. Struct Optim 15(2):73–80

    Article  MathSciNet  Google Scholar 

  • Poulsen PN, Damkilde L (2000) Limit state analysis of reinforced concrete plates subjected to in-plane forces. Int J Solids Struct 37:6011–6029

    Article  MATH  Google Scholar 

  • Prager W, Rozvany G (1977a) Optimal layout of grillages. J Struct Mech 5(1):1–18

    Article  Google Scholar 

  • Prager W, Rozvany GI (1977b) Optimization of structural geometry. In: Dynamical systems. Elsevier, pp 265–293

  • Prager W, Shield R (1967) A general theory of optimal plastic design. J Appl Mech 34(1):184–186

    Article  MATH  Google Scholar 

  • Prager W, Taylor JE (1968) Problems of optimal structural design. J Appl Mech 35(1):102–106

    Article  MATH  Google Scholar 

  • Rozvany GI, Prager W (1979) A new class of structural optimization problems: optimal archgrids. Comput Methods Appl Mech Eng 19(1):127–150

    Article  MathSciNet  MATH  Google Scholar 

  • Rozvany GI, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3-4):250–252

    Article  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21 (2):120–127

    Article  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Article  Google Scholar 

  • Sloan SW (1988) Lower bound limit analysis using finite elements and linear programming. Int J Numer Anal Methods Geomech 12:61–77

    Article  MATH  Google Scholar 

  • Sloan SW (1989) Upper bound limit analysis using finite elements and linear programming. Int J Numer Anal Methods Geomech 13:263–282

    Article  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Terlaky T (2013) Interior point methods of mathematical programming, vol 5. Springer Science & Business Media

Download references

Funding

The authors received financial support from the ALECTIA Foundation and Innovation Fund Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten A. Herfelt.

Additional information

Responsible Editor: Anton Evgrafov

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Equilibrium matrices for the plane stress elements

1.1 A.1 The Zouain element

$$ \hat{\mathbf{B}}^{T} = -\frac{1}{6}\left[\begin{array}{ccc} {\tilde{\mathbf{P}}}_{1} & 0 & 0 \\ 0 & {\tilde{\mathbf{P}}}_{2} & 0 \\ 0 & 0 & {\tilde{\mathbf{P}}}_{3} \\ -{\tilde{\mathbf{P}}}_{1} & {\tilde{\mathbf{P}}}_{3}-{\tilde{\mathbf{P}}}_{1} & {\tilde{\mathbf{P}}}_{2}-{\tilde{\mathbf{P}}}_{1} \\ {\tilde{\mathbf{P}}}_{3}-{\tilde{\mathbf{P}}}_{2} & -{\tilde{\mathbf{P}}}_{2} & {\tilde{\mathbf{P}}}_{1}-{\tilde{\mathbf{P}}}_{2} \\ {\tilde{\mathbf{P}}}_{2}-{\tilde{\mathbf{P}}}_{3} & {\tilde{\mathbf{P}}}_{1}-{\tilde{\mathbf{P}}}_{3} & -{\tilde{\mathbf{P}}}_{3} \end{array}\right] $$
(39)

1.2 A.2 Standard six-node element

$$ \hat{\mathbf{B}}^{T} = -\frac{1}{18}\left[\begin{array}{ccc} 5{\tilde{\mathbf{P}}}_{1} & -{\tilde{\mathbf{P}}}_{1} & -{\tilde{\mathbf{P}}}_{1} \\ -{\tilde{\mathbf{P}}}_{2} & 5{\tilde{\mathbf{P}}}_{2} & -{\tilde{\mathbf{P}}}_{2} \\ -{\tilde{\mathbf{P}}}_{3} & -{\tilde{\mathbf{P}}}_{3} & 5{\tilde{\mathbf{P}}}_{3} \\ -2{\tilde{\mathbf{P}}}_{1} & 2{\tilde{\mathbf{P}}}_{2}+ 8{\tilde{\mathbf{P}}}_{3} & 2{\tilde{\mathbf{P}}}_{3}+ 8{\tilde{\mathbf{P}}}_{2} \\ 2{\tilde{\mathbf{P}}}_{1}+ 8{\tilde{\mathbf{P}}}_{3} & -2{\tilde{\mathbf{P}}}_{2} & 2{\tilde{\mathbf{P}}}_{3}+ 8{\tilde{\mathbf{P}}}_{1} \\ 2{\tilde{\mathbf{P}}}_{1}+ 8{\tilde{\mathbf{P}}}_{2} & 2{\tilde{\mathbf{P}}}_{2}+ 8{\tilde{\mathbf{P}}}_{1} & -2{\tilde{\mathbf{P}}}_{3} \end{array}\right] $$
(40)

1.3 A.3 Upper bound element

$$ \hat{\mathbf{B}}^{T} = -\frac{1}{6}\left[\begin{array}{ccc} 3{\tilde{\mathbf{P}}}_{1} & -{\tilde{\mathbf{P}}}_{1} & -{\tilde{\mathbf{P}}}_{1} \\ -{\tilde{\mathbf{P}}}_{2} & 3{\tilde{\mathbf{P}}}_{2} & -{\tilde{\mathbf{P}}}_{2} \\ -{\tilde{\mathbf{P}}}_{3} & -{\tilde{\mathbf{P}}}_{3} & 3{\tilde{\mathbf{P}}}_{3} \\ 0 & 4{\tilde{\mathbf{P}}}_{3} & 4{\tilde{\mathbf{P}}}_{2} \\ 4{\tilde{\mathbf{P}}}_{3} & 0 & 4{\tilde{\mathbf{P}}}_{1} \\ 4{\tilde{\mathbf{P}}}_{2} & 4{\tilde{\mathbf{P}}}_{1} & 0 \end{array}\right] $$
(41)

Appendix B: Tabulated results

Table 1 Minimum volume and computational time for the MBB-beam problem
Table 2 Minimum volume and computational time for the cantilever problem
Table 3 Minimum volume and computational time for the cantilever beam with circular hole problem
Table 4 Minimum volume and computational time for the portal structure problem with fixed supports

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herfelt, M.A., Poulsen, P.N. & Hoang, L.C. Strength-based topology optimisation of plastic isotropic von Mises materials. Struct Multidisc Optim 59, 893–906 (2019). https://doi.org/10.1007/s00158-018-2108-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-2108-y

Keywords

Navigation