Skip to main content
Log in

Categorical structural optimization using discrete manifold learning approach and custom-built evolutionary operators

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In present work, we address the non-ordinal categorical design variables, such as different beam/bar cross-section types, various materials or components available within a catalog. We interpret the admissible values of categorical variables as discrete points in multi-dimensional space of physical attributes, which allows computing distances but has no ordering property. Then we propose to use the Isomap manifold learning approach to eliminate the possibly redundant dimensionality and obtain a reduced-order design space in which the geodesic distances are preserved in a low-dimensional graph. Then, taking advantage of the shortest path and the neighbors provided by Dijkstra algorithm, we propose graph-based crossover and mutation operators to be used in evolutionary optimization. The method is applied to the optimal design of truss and frame structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Abramson MA, Audet C, Chrissis JW, Walston JG (2009) Mesh adaptive direct search algorithms for mixed variable optimization. Optim Lett 3(1):35–47

    Article  MathSciNet  MATH  Google Scholar 

  • Ashby MF, Johnson K (2013) Materials and design: the art and science of material selection in product design. Butterworth-Heinemann, London

    Google Scholar 

  • Banker RD, Morey RC (1986) The use of categorical variables in data envelopment analysis. Manag Sci 32(12):1613–1627

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Coelho RF (2012) Extending moving least squares to mixed variables for metamodel-assisted optimization. In: 6th european congress on computational methods in applied sciences and engineering-ECCOMAS 2012, Vienna, Austria, September 10–14

  • Coelho RF (2014) Metamodels for mixed variables based on moving least squares: application to the structural analysis of a rigid frame (). Optim Eng 15(2):311–329

    Article  MathSciNet  MATH  Google Scholar 

  • Coelho RF, Xiao M, Guglielmetti A, Herrera M, Zhang W (2015) Investigation of three genotypes for mixed variable evolutionary optimization. In: Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences, pp 309–319

  • Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems, vol 242. Springer, Berlin

    Book  MATH  Google Scholar 

  • Csébfalvi A (2013) ANGEL: A simplified hybrid metaheuristic for structural optimization. INTECH Open Access Publisher, London

    Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira AJM (2008) MATLAB Codes for finite element analysis: solids and structures volume, vol 157. Springer Science & Business Media, Berlin

    Google Scholar 

  • Fu Y, Yan S, Huang TS (2008) Classification and feature extraction by simplexization. IEEE Trans Inf Forensics Secur 3(1):91–100

    Article  Google Scholar 

  • Gao T, Zhang W (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88(8):774–796

    Article  MATH  Google Scholar 

  • Goldberg DE (2006) Genetic algorithms. Pearson Education, India

    Google Scholar 

  • Herrera F, Lozano M, Verdegay JL (1998) Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif Intell Rev 12(4):265–319

    Article  MATH  Google Scholar 

  • Herrera M, Guglielmetti A, Xiao M, Coelho RF (2014) Metamodel-assisted optimization based on multiple kernel regression for mixed variables. Struct Multidiscip Optim 49(6):979–991

    Article  Google Scholar 

  • Houck CR, Joines J, Kay MG (1995) A genetic algorithm for function optimization: a matlab implementation. NCSU-IE TR, 95(09)

  • Jolliffe I (2002) Principal component analysis. Wiley Online Library

  • Kaveh A, Talatahari S (2009) Size optimization of space trusses using big bang–big crunch algorithm. Comput Struct 87(17):1129–1140

    Article  Google Scholar 

  • Kokkolaras M, Audet C, Dennis JE (2001) Mixed variable optimization of the number and composition of heat intercepts in a thermal insulation system. Optim Eng 2(1):5–29

    Article  MathSciNet  MATH  Google Scholar 

  • Lee N, Kim J-M (2010) Conversion of categorical variables into numerical variables via bayesian network classifiers for binary classifications. Comput Stat Data Anal 54(5):1247–1265

    Article  MathSciNet  MATH  Google Scholar 

  • Liao T, Socha K, Montes de Oca MA, Stützle T, Dorigo M (2014) Ant colony optimization for mixed-variable optimization problems. IEEE Trans Evol Comput 18(4):503–518

    Article  Google Scholar 

  • Lindroth P, Patriksson M (2011) Pure categorical optimization: a global descent approach. Department of Mathematical Sciences, Division of Mathematics, Chalmers University of Technology University of Gothenburg

  • Martin IM, Eroglu S (1993) Measuring a multi-dimensional construct: country image. J Bus Res 28 (3):191–210

    Article  Google Scholar 

  • McCane B, Albert M (2008) Distance functions for categorical and mixed variables. Pattern Recogn Lett 29(7):986–993

    Article  Google Scholar 

  • Meng L, Breitkopf P, Raghavan B, Mauvoisin G, Bartier O, Hernot X (2015) Identification of material properties using indentation test and shape manifold learning approach. Comput Methods Appl Mech Eng 297:239–257

    Article  MathSciNet  Google Scholar 

  • Meng L, Breitkopf P, Le Quilliec G, Raghavan B, Villon P (2016) Nonlinear shape-manifold learning approach: concepts, tools and applications. Arch Comput Meth Eng 25:1–21

  • Raghavan B, Breitkopf P, Tourbier Y, Villon P (2013) Towards a space reduction approach for efficient structural shape optimization. Struct Multidiscip Optim 48(5):987–1000

    Article  Google Scholar 

  • Sloane D, Morgan SP (1996) An introduction to categorical data analysis. Annu Rev Sociol 22:351–375

  • Sokolowski J, Zolesio J-P (1992) Introduction to shape optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  • Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the China Scholarship Council (201406290021), the National Natural Science Foundation of China (No.11302173 and No. 11620101002) and the Natural Science Foundation of Shaanxi Province (No. 2017JQ1037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanhuan Gao.

Appendices

Appendix A

Table 4 The attribute catalog of bar cross-sections for test 1 and test 2

Appendix B

Table 5 The attribute catalog of beam cross-sections for test 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Breitkopf, P., Coelho, R.F. et al. Categorical structural optimization using discrete manifold learning approach and custom-built evolutionary operators. Struct Multidisc Optim 58, 215–228 (2018). https://doi.org/10.1007/s00158-017-1890-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1890-2

Keywords

Navigation