Skip to main content

Mixed Variable Structural Optimization: Toward an Efficient Hybrid Algorithm

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Abstract

Designing a structure implies a selection of optimal concept and sizing, with the aim of minimizing the weight and/or production cost. In general, a structural optimization problem involves both continuous variables (e.g., geometrical variables, …) and categorical ones (e.g., materials, stiffener types, …). Such a problem belongs to the class of mixed-integer nonlinear programming (MINLP) problems. In this paper, we specifically consider a subclass of structural optimization problems where the categorical variables set is non-ordered. To facilitate categorical variables handling, design catalogs are introduced as a generalization of the stacking guide used for composite optimization. From these catalogs, a decomposition of the MINLP problem is proposed, and solved through a branch and bound method. This methodology is tested on a 10 bars truss optimization inspired from an aircraft design problem, consistent with the level of complexity faced in the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  2. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Scholarpedia 2(9), 1462 (2001)

    Google Scholar 

  4. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1–25 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lampinen, J.A., Zelinka, I.: Mixed integer-discrete-continuous optimization, by differential evolution, part 1: the optimization method. In: Proceedings of MENDEL 1999, 5th International Mendel Conference on Soft Computing, pp. 71–76 (1999)

    Google Scholar 

  6. Guo, C.-X., Hu, J.-S., Ye, B., Cao, Y.-J.: Swarm intelligence for mixed-variable design optimization. J. Zhejiang Univ. Sci. 5(7), 851–860 (2004)

    Article  MATH  Google Scholar 

  7. Dimopoulos, G.G.: Mixed-variable engineering optimization based on evolutionary and social metaphors. Comput. Methods Appl. Mech. Eng. 196(4–6), 803–817 (2007)

    Article  MATH  Google Scholar 

  8. Deb, K., Goyal, M.: A flexible optimization procedure for mechanical component design based on genetic adaptive search. J. Mech. Des. 120(2), 162 (1998)

    Article  Google Scholar 

  9. Audet, C., Dennis, J.E.: Pattern search algorithms for mixed variable programming. SIAM J. Optim. 11(3), 573–594 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rakshit, S., Ananthasuresh, G.K.: Simultaneous material selection and geometry design of statically determinate trusses using continuous optimization. Struct. Multidiscip. Optim. 35(1), 55–68 (2008)

    Article  Google Scholar 

  11. Herrera, M., Guglielmetti, A., Xiao, M., Coelho, R.F.: Metamodel-assisted optimization based on multiple kernel regression for mixed variables. Structural and Multidisciplinary Optimization 49(6), 979–991 (2014)

    Article  Google Scholar 

  12. Grihon, S.: Structure sizing optimization capabilities at AIRBUS. In: WCSMO 2012 (2017, submitted)

    Google Scholar 

  13. Grihon, S.: PRESTO: a rapid sizing tool for airframe conceptual design studies. In: LMS European Aeronautical Conference (2012)

    Google Scholar 

  14. Adams, D.B., Watson, L.T., Gürdal, Z., Anderson-Cook, C.M.: Genetic algorithm optimization and blending of composite laminates by locally reducing laminate thickness. Adv. Eng. Softw. 35(1), 35–43 (2004)

    Article  Google Scholar 

  15. Carpentier, A., Michel, L., Grihon, S., Barrau, J.-J.: Optimization methodology of composite panels. In: Proceedings of the 12th European Conference on Composite Materials, ECCM 2012, pp. 1–8 (2006)

    Google Scholar 

  16. Carpentier, A., Barrau, J.-J., Michel, L., Grihon, S.: Buckling optimisation of composite panels via lay-up tables. In: III European Conference on Computational Mechanics, pp. 226–226. Springer, Dordrecht (2006)

    Google Scholar 

  17. Merval, A.: L’Optimisation Multiniveaux D’une Structure. PhD thesis (2008)

    Google Scholar 

  18. Merval, A., Samuelides, M., Grihon, S.: Multilevel optimization with local mass minimization. In: 2nd European Conference for Aerospace Sciences - EUCASS 2007 (2007)

    Google Scholar 

  19. Samuelides, M., Bettebghor, D., Grihon, S., Merval, A., Morlier, J.: Modèles réduits en optimisation multiniveau de structures aéronautiques. 9e Colloque national en calcul des structures (2009)

    Google Scholar 

  20. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tseng, C.H., Wang, L.W., Ling, S.F.: enhancing branch-and-bound method for structural optimization. J. Struct. Eng. 121(5), 831–837 (1995)

    Article  Google Scholar 

  23. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Meth. Eng. 62(14), 2009–2027 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is part of the MDA-MDO project of the French Institute of Technology IRT Saint Exupery. We wish to acknowledge the PIA framework (CGI, ANR) and the project industrial members for their support, financial backing and/or own knowledge: Airbus, Airbus Group Innovations, SOGETI High Tech, Altran Technologies, CERFACS. We would like to thank Charlie Vanaret for all his advices, specifically for the branch and bound formulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Jean Barjhoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barjhoux, PJ., Diouane, Y., Grihon, S., Bettebghor, D., Morlier, J. (2018). Mixed Variable Structural Optimization: Toward an Efficient Hybrid Algorithm. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_140

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_140

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics