Skip to main content
Log in

Truss optimization with multiple frequency constraints and automatic member grouping

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper deals with sizing and shape structural optimization problems with respect to the minimization of the masses of truss structures considering multiple natural frequencies as the constraints of the problems. The sizing and shape design variables are discrete and continuous, respectively. It can be attractive to use a reduced number of distinct cross-sectional areas minimizing costs of fabrication, transportation, storing, checking, welding, and so on. Also, it is expected a labor-saving when the structure is welded, checked and so on. On the other hand, one can observe that the task of discovering the optimum member grouping is not trivial and leads to an exhaustive trial-and-error process. Cardinality constraints are adopted in order to obtain an automatic variable linking searching for the best member grouping of the bars of the trusses analyzed in this paper. A CRPSO (Craziness based Particle Swarm Optimization) is the search algorithm adopted in this paper. This algorithm uses a modified velocity expression and an operator called “craziness velocity” in order to avoid premature convergence. An Adaptive Penalty Method is adopted to handle the constraints. Six truss structures are analyzed, presenting very interesting results providing curves of tradeoff between the optimized weights versus the number of distinct cross-sectional areas used in these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71

Similar content being viewed by others

References

  • Achtziger W (1996) Truss topology optimization including bar properties different for tension and compression. Structural Optimization 12(1):63–74

    Article  Google Scholar 

  • Achtziger W (1997) Topology optimization of discrete structures. In: Topology Optimization in Structural Mechanics. Springer, pp 57–100

  • Achtziger W (1999) Local stability of trusses in the context of topology optimization part i: exact modelling. Struct Optim 17(4):235–246

    Google Scholar 

  • Achtziger W (1999) Local stability of trusses in the context of topology optimization part ii: a numerical approach. Struct Multidiscip Optim 17(4):247–258

    MathSciNet  Google Scholar 

  • Achtziger W, Kočvara M (2007) On the maximization of the fundamental eigenvalue in topology optimization. Struct Multidiscip Optim 34(3):181–195

    Article  MathSciNet  MATH  Google Scholar 

  • Achtziger W, Kočvara M (2007) Structural topology optimization with eigenvalues. SIAM J Optim 18 (4):1129–1164

    Article  MathSciNet  MATH  Google Scholar 

  • Angelo JS, Bernardino H, Barbosa H (2015) Ant colony approaches for multiobjective structural optimization problems with a cardinality constraint. Adv Eng Softw 80:101–115

    Article  Google Scholar 

  • Barbosa HJC, Lemonge ACC (2002) An adaptive penalty scheme in genetic algorithms for constrained optimization problems. In: GECCO, vol 2, pp 287–294

  • Barbosa HJC, Lemonge ACC (2005) A genetic algorithm encoding for a class of cardinality constraints. In: Proceedings of the 7th annual conference on genetic and evolutionary computation. ACM Press, pp 1193–1200

  • Barbosa HJC, Lemonge ACC, Borges CCH (2008) A genetic algorithm encoding for cardinality constraints and automatic variable linking in structural optimization. Eng Struct 30:3708–3723

    Article  Google Scholar 

  • Bathe KJ (2006) Finite element procedures. Prentice Hall, Pearson Education Inc

  • Bellagamba L, Yang T (1981) Minimum-mass truss structures with constraints on fundamental natural frequency. AIAA J 19(11): 1452–1458

    Article  Google Scholar 

  • Biedermann JD (1997) Representing design knowledge with neural networks. Comput-Aided Civil Infrastruct Eng 12(4):277–285

    Article  Google Scholar 

  • Biedermann JD, Grierson DE (1995) A generic model for building design. Eng Comput 11(3):173–184

    Article  Google Scholar 

  • Biedermann JD, Grierson DE (1996) Training and using neural networks to represent heuristic design knowledge. Adv Eng Softw 27(1):117–128

    Article  Google Scholar 

  • Carvalho ECR, Bernardino H, Hallak PH, Lemonge ACC (2015) An adaptive penalty scheme to solve constrained structural optimization problems by a CRPSO. Optim Eng. To appear

  • Chun J, Song J, Paulino GH (2012) Topology optimization of structures under stochastic excitations. In: 2012 joint conference of the engineering mechanics institute and the 11th ASCE joint specialty conference on probabilistic mechanics and structural reliability

    Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, 1995. MHS’95. IEEE, pp 39–43

  • Farshchin M, Camp CV, Maniat M (2016) Multi-class teaching–learning-based optimization for truss design with frequency constraints. Eng Struct 106:355–369

    Article  Google Scholar 

  • Filipov ET, Chun J, Paulino GH, Song J (2016) Polygonal multiresolution topology optimization (polymtop) for structural dynamics. Struct Multidiscip Optim 53(4):673–694

    Article  Google Scholar 

  • Galante M (1996) Genetic algorithms as an approach to optimize real-world trusses. Int J Numer Methods Eng 39(3):361–382

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes HM (2011) Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst Appl 38(1):957–968

    Article  Google Scholar 

  • Grierson DE, Cameron GE (1987) Soda-structural optimization design and analysis. Waterloo Engineering Software, Ontario

    Google Scholar 

  • Herencia JE, Haftka RT (2010) Structural optimization with limited number of element properties. Struct Multidiscip Optim 41(5):817–820

    Article  Google Scholar 

  • Herencia JE, Haftka RT, Balabanov V (2013) Structural optimization of composite structures with limited number of element properties. Struct Multidiscip Optim 47(2):233–245

    Article  MathSciNet  MATH  Google Scholar 

  • Kar R, Mandal D, Mondal S, Ghoshal SP (2012) Craziness based particle swarm optimization algorithm for fir band stop filter design. Swarm and Evolutionary Computation

  • Kaveh A, Farhoudi N (2011) A unified approach to parameter selection in meta-heuristic algorithms for layout optimization. J Construct Steel Res 67(10):1453–1462

    Article  Google Scholar 

  • Kaveh A, Farhoudi N (2013) A new optimization method: Dolphin echolocation. Adv Eng Softw 59:53–70

    Article  Google Scholar 

  • Kaveh A, Ghazaan MI (2016) Optimal design of dome truss structures with dynamic frequency constraints. Struct Multidiscip Optim 53(3):605–621

    Article  MathSciNet  Google Scholar 

  • Kaveh A, Jafari L, Farhoudi N (2015) Truss optimization with natural frequency constraints using a dolphin echolocation algorithm. Asian J Civil Eng 16:29–46

    Google Scholar 

  • Kaveh A, Jafari L, Farhoudi N (2015) Truss optimization with natural frequency constraints using a dolphin echolocation algorithm. Asian j Civil Eng (BHRC) 16(1):29–46

    Google Scholar 

  • Kaveh A, Javadi S (2014) Shape and size optimization of trusses with multiple frequency constraints using harmony search and ray optimizer for enhancing the particle swarm optimization algorithm. Acta Mechanica 225 (6):1595–1605

    Article  MATH  Google Scholar 

  • Kaveh A, Zolghadr A (2011) Shape and size optimization of truss structures with frequency constraints using enhanced charged system search algorithm. Asian J Civil Eng 12(4):487–509

    Google Scholar 

  • Kaveh A, Zolghadr A (2012) Truss optimization with natural frequency constraints using a hybridized css-bbbc algorithm with trap recognition capability. Comput Struct 102:14–27

    Article  Google Scholar 

  • Kaveh A, Zolghadr A (2014) Democratic PSO for truss layout and size optimization with frequency constraints. Comput Struct 130:10–21

    Article  Google Scholar 

  • Konzelman CJ (1986) Dual methods and approximation concepts for structural optimization. Department of Mechanical Engineering U.O.T

  • Krempser E, Bernardino HS, Barbosa H, Lemonge A, de Castro C (2017) Performance evaluation of local surrogate models in differential evolution based optimum design of truss structures. Eng Comput 34(2):499–547

  • Kripka M, Medeiros GF, Lemonge ACC (2013) Structural optimization of reinforced concrete building grillages considering cardinality constraints. In: 10th world congress on structural and multidisciplinary optimization, pp 01–06

    Google Scholar 

  • Kripka M, Medeiros GF, Lemonge ACC (2015) Use of optimization for automatic grouping of beam cross-section dimensions in reinforced concrete building structures. Eng Struct 99:311–318

    Article  Google Scholar 

  • Lemonge A, Barbosa H, Coutinho A, Borges C (2011) Multiple cardinality constraints and automatic member grouping in the optimal design of steel framed structures. Eng Struct 33:433–444

    Article  Google Scholar 

  • Lemonge ACC, Barbosa HJC, Coutinho ALGA, Borges CCH (2011) Multiple cardinality constraints and automatic member grouping in the optimal design of steel framed structures. Eng Struct 33(2):433–444

    Article  Google Scholar 

  • Lemonge ACC, Barbosa HJC, da Fonseca LG, Coutinho ALGA (2010) A genetic algorithm for topology optimization of dome structures. In: Proceedings of the 2nd international conference on engineering optimization EngOpt

    Google Scholar 

  • Lin J, Che W, Yu Y (1982) Structural optimization on geometrical configuration and element sizing with statical and dynamical constraints. Comput Struct 15(5):507–515

    Article  MATH  Google Scholar 

  • Lingyun W, Mei Z, Guangming W, Guang M (2005) Truss optimization on shape and sizing with frequency constraints based on genetic algorithm. Comput Mech 35(5):361–368

    Article  MATH  Google Scholar 

  • Liu X, Cheng G, Wang B, Lin S (2012) Optimum design of pile foundation by automatic grouping genetic algorithms. ISRN Civil Engineering

  • Liu X, Cheng G, Yan J, Jiang L (2012) Singular optimum topology of skeletal structures with frequency constraints by AGGA. Struct Multidiscip Optim 45(3):451–466

    Article  Google Scholar 

  • Miguel LFF, Miguel LFF (2012) Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Syst Appl 39(10):9458–9467

    Article  Google Scholar 

  • Nakamura T, Ohsaki M (1992) A natural generator of optimum topology of plane trusses for specified fundamental frequency. Comput Methods Appl Mech Eng 94(1):113–129

    Article  MATH  Google Scholar 

  • Ohsaki M (2016) Optimization of finite dimensional structures. CRC Press

  • Rajan S (1995) Sizing, shape, and topology design optimization of trusses using genetic algorithm. J Struct Eng 121(10):1480–1487

    Article  Google Scholar 

  • Rajeev S, Krishnamoorthy C (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng 118(5):1233–1250

    Article  Google Scholar 

  • Rubio WM, Paulino GH, Silva ECN (2011) Tailoring vibration mode shapes using topology optimization and functionally graded material concepts. Smart Mater Struct 20(2):025,009

    Article  Google Scholar 

  • Sedaghati R (2005) Benchmark case studies in structural design optimization using the force method. Int J Solids Struct 42(21):5848–5871

    Article  MATH  Google Scholar 

  • Shea K, Cagan J, Fenves SJ (1997) A shape annealing approach to optimal truss design with dynamic grouping of members. J Mech Des 119(3):388–394

    Article  Google Scholar 

  • Stolpe M (2016) Truss optimization with discrete design variables: a critical review. Struct Multidiscip Optim 53(2):349–374

    Article  MathSciNet  Google Scholar 

  • Tejani GG, Savsani VJ, Patel VK (2016) Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. Journal of Computational Design and Engineering

  • Tejani GG, Savsani VJ, Patel VK (2016) Modified sub-population teaching-learning-based optimization for design of truss structures with natural frequency constraints. Mechanics Based Design of Structures and Machines

  • Tenne Y, Goh CK (2010) Computational intelligence in expensive optimization problems, vol. 2 Springer Science and Business Media

  • Vargas DEC, Lemonge ACC, Barbosa HJC, Bernardino H (2015) Um algoritmo baseado em evoluç ao diferencial para problemas de otimizaç ao estrutural multiobjetivo com restriç oes. Revista Internacional de Métodos Numéricos para Cálculo y Dise no en Ingeniería. (in portuguese)

  • Wang D, Zhang W, Jiang J (2004) Truss optimization on shape and sizing with frequency constraints. AIAA J 42(3):622–630

    Article  Google Scholar 

  • Zhang X, Ramos AS, Paulino GH (2017) Material nonlinear topology optimization using the ground structure method with a discrete filtering scheme. Struct Multidiscip Optim 55(6):2045–2072

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the referees that helped the quality of the paper, CNPq (305175/2013-0 e 305099/2014-0), FAPEMIG (TEC PPM 528/11, TEC PPM 388/14 and TEC APQ 00103-12) and CAPES for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afonso C. C. Lemonge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, J.P.G., Lemonge, A.C.C., Carvalho, É.C.R. et al. Truss optimization with multiple frequency constraints and automatic member grouping. Struct Multidisc Optim 57, 547–577 (2018). https://doi.org/10.1007/s00158-017-1761-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1761-x

Keywords

Navigation