Skip to main content
Log in

An innovative H –norm based worst case scenario approach for dynamic compliance optimization with applications to viscoelastic beams

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A novel frequency–based definition of dynamic compliance is introduced within the framework of H –norm based structural dynamics in the presence of load uncertainties. The system itself is supposed to depend on a vector of design parameters with respect to which an optimal design is pursued. A three-step worst-case-scenario is then developed that finds the minimum-compliance structure capable of accounting for the entire norm–bounded load sets. Once the problem is initialized, the current worst load is found that is used as input to the minimization of the structural compliance and the procedure is repeated until convergence. Numerical examples are eventually proposed that deal with viscoelastic beams discretized via a truly–mixed finite–element scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  • Ang A, Tang W (1975) Probability Concepts in Engineering Planning and Design, Vol. 1: Basic Principles Wiley

  • Ang A, Tang W (1984) Probability Concepts in Engineering Planning and Design, Vol. 2: Decision, Risk, and Reliability. Wiley

  • Asadpoure A, Tootkaboni M, Guest J (2011) Robust topology optimization of structures with uncertainties in stiffness ? application to truss structures. Comput Struct 89:1131–1141

    Article  Google Scholar 

  • Ben-Haim Y, Elishakoff I (1990) Convex Models of Uncertainty in Applied Mechanics. Elsevier, New York NY

  • Bendsoe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    MATH  Google Scholar 

  • Bendsoe M, Sigmund O (2003) Topology optimization: Theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  • Boyd S, Balakrishnan V, Kabamba P (1989) A bisection method for computing the h norm of a transfer matrix and related problems. Math Control Signals Syst 2(3):207–219

    Article  MathSciNet  MATH  Google Scholar 

  • Brittain K, Silva M, Tortorelli D (2012) Minmax topology optimization. Struct Multidiscip Optim 45:657–668

    Article  MathSciNet  MATH  Google Scholar 

  • Bruggi M, Venini P (2008) A mixed fem approach to stress-constrained topology optimization. Int J Numer Methods Engrg 73:1693–1714

    Article  MathSciNet  MATH  Google Scholar 

  • Bruinsma N, Steinbuch A (1990) A fast algorithm to compute the h norm of a transfer function matrix. Syst Control Lett 14(4):287–293

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Chen W, Sanghoon L (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidiscip Optim 41:507–524

    Article  MathSciNet  MATH  Google Scholar 

  • Cherkaev E, Cherkaev A (2003) Principal compliance and robust optimal design. J Elast 72:71–98

    Article  MathSciNet  MATH  Google Scholar 

  • Cherkaev E, Cherkaev A (2008) Minimax optimization problem of structural design. Comput Struct 86:1426–1435

    Article  MATH  Google Scholar 

  • Csebfalvi A (2016) Structural optimization under uncertainty in loading directions: Benchmark results. Advances in Engineering Software. doi:10.1016/j.advengsoft.2016.02.006

  • Diaz A, Bendsoe M (1992) Shape optimization of structures for multiple loading conditions using a homogenization method. Structural Optimization 4:17–22

    Article  Google Scholar 

  • Francis B (1987) A Course in H Control Theory Lecture notes in control and information sciences, vol 88. Springer-Verlag, Berlin, Heidelberg

  • Giesy DP, Lim KB (1993) H norm sensitivity formula with control system design applications. J Guid Control Dyn 16(6):1138–1145

    Article  MATH  Google Scholar 

  • Guest J, Igusa T (2008) Structural optimization under uncertain loads and nodal locations. Comput Methods Appl Mech Eng 198:116–124

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Bai W, Zhang W (2009) Confidence extremal structural response analysis of truss structures under static load uncertainty via sdp relaxation. Comput Struct 87(3–4):246–253

    Article  Google Scholar 

  • Guo X, Bai W, Zhang W, Gao X (2009) Confidence structural robust design and optimization under stiffness and load uncertainties. Comput Methods Appl Mech Eng 198 (41–44):3378– 3399

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhao X, Zhang W, Yan J, Sun G (2015) Multi–scale robust design and optimization considering load uncertainties. Comput Methods Appl Mech Eng 283:994–1009

    Article  MathSciNet  Google Scholar 

  • Holmberg E, Thore CJ, Klarbring A (2015) Worst-case topology optimization of self-weight loaded structures using semi-definite programming. Struct Multidiscip Optim 52:915–928

    Article  MathSciNet  Google Scholar 

  • Jensen JS, Nakshatrala PB, Tortorelli DA (2014) On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems. Struct Multidiscip Optim 49:831– 837

    Article  MathSciNet  Google Scholar 

  • Kanno Y, Takewaki I (2006) Sequential semidefinite program for maximum robustness design of structures under load uncertainty. J Optim Theory Appl 130(2):265–287

    Article  MathSciNet  MATH  Google Scholar 

  • Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscip Optim 26:295–307

    Article  Google Scholar 

  • Pingaro M, Venini P (2016) A fast approach to analysis and optimization of viscoelastic beams. Comput Struct 168:46–55

    Article  Google Scholar 

  • Seyranian A, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Structural Optimization 8:207– 227

    Article  Google Scholar 

  • Silva M, Tortorelli D, Norato J, HA C, Bae HR (2010) Component and system reliability-based topology optimization using a single-loop method. Struct Multidiscip Optim 41:87–106

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359– 373

    Article  MathSciNet  MATH  Google Scholar 

  • Takezawa A, Nii S, Kitamura M, Koguso N (2011) Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. Comput Methods Appl Mech Eng 200:2268–2281

    Article  MathSciNet  MATH  Google Scholar 

  • Torii A, Novotny AA, dos Santos R (2016) Robust compliance topology optimization based on the topological derivative concept. International Journal for Numerical Methods in Engineering. doi:10.1002/nme.5144

  • Zhou M, Lazarov B, Sigmund O (2016) Topology optimization for optical microlithography with partially coherent illumination. International Journal for Numerical Methods in Engineering. doi:10.1002/nme.5299

Download references

Acknowledgments

Fondazione Cariplo (Grant Safer Helmets) is gratefully acknowledged. Professor Davide Raimondo of the University of Pavia is gratefully acknowledged for stimulating discussions on the topics of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Venini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venini, P., Pingaro, M. An innovative H –norm based worst case scenario approach for dynamic compliance optimization with applications to viscoelastic beams. Struct Multidisc Optim 55, 1685–1710 (2017). https://doi.org/10.1007/s00158-016-1605-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1605-0

Keywords

Navigation