Skip to main content

Advertisement

Log in

On design optimization for structural crashworthiness and its state of the art

  • REVIEW ARTICLE
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Optimization for structural crashworthiness and energy absorption has become an important topic of research attributable to its proven benefits to public safety and social economy. This paper provides a comprehensive review of the important studies on design optimization for structural crashworthiness and energy absorption. First, the design criteria used in crashworthiness and energy absorption are reviewed and the surrogate modeling to evaluate these criteria is discussed. Second, multiobjective optimization, optimization under uncertainties and topology optimization are reviewed from concepts, algorithms to applications in relation to crashworthiness. Third, the crashworthy structures are summarized, from generically novel structural configurations to industrial applications. Finally, some conclusions and recommendations are provided to enable academia and industry to become more aware of the available capabilities and recent developments in design optimization for structural crashworthiness and energy absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasi M, Ghafari-Nazari A, Reddy S, Fard M (2014) A new approach for optimizing automotive crashworthiness: concurrent usage of ANFIS and Taguchi method. Struct Multidisc Optim 49:485–499

  • Abdullah K, Wild P, Jeswiet J, Ghasempoor A (2001) Tensile testing for weld deformation properties in similar gage tailor welded blanks using the rule of mixtures. J Mater Process Technol 112:91–97

    Article  Google Scholar 

  • Abramowicz W, Jones N (1984) Dynamic axial crushing of square tubes. Int J Impact Eng 2:179–208

    Article  Google Scholar 

  • Abramowicz W, Jones N (1986) Dynamic progressive buckling of circular and square tubes. Int J Impact Eng 4:243–270

    Article  Google Scholar 

  • Abramowicz W, Wierzbicki T (1989) Axial crushing of multicorner sheet metal columns. J Appl Mech 56:113–120

    Article  Google Scholar 

  • Acar E (2010a) Optimizing the shape parameters of radial basis functions: an application to automobile crashworthiness. Proc Institution Mech Eng Part D-J Automobile Eng 224:1541–1553

    Article  Google Scholar 

  • Acar E (2010b) Various approaches for constructing an ensemble of metamodels using local measures. Struct Multidisc Optim 42:879–896

  • Acar E, Rais-Rohani M (2009) Ensemble of metamodels with optimized weight factors. Struct Multidisc Optim 37:279–294

  • Acar E, Solanki K (2009a) Improving the accuracy of vehicle crashworthiness response predictions using an ensemble of metamodels. Int J Crashworth 14:49–61

    Article  Google Scholar 

  • Acar E, Solanki K (2009b) System reliability based vehicle design for crashworthiness and effects of various uncertainty reduction measures. Struct Multidisc Optim 39:311–325

  • Acar E, Guler MA, Gerceker B, Cerit ME, Bayram B (2011) Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations. Thin-Walled Struct 49:94–105

    Article  Google Scholar 

  • Ahmetoglu MA, Brouwers D, Shulkin L, Taupin L, Kinzel GL, Altan T (1995) Deep drawing of round cups from tailor-welded blanks. J Mater Process Technol 53:684–694

    Article  Google Scholar 

  • Alexander J (1960) An approximate analysis of the collapse of thin cylindrical shells under axial loading. Quarter J Mech Appl Math 13:10–15

    Article  MathSciNet  MATH  Google Scholar 

  • Allahbakhsh HR, Saetni J (2011) Design optimization of square and circular aluminium extrusion damage columns with crashworthiness criteria. Indian J Eng Mater Sci 18:341–350

    Google Scholar 

  • Allahbakhsh HR, Saemi J, Hourali M (2011) Design optimization of square aluminium damage columns with crashworthiness criteria. Mechanika:187–192

  • Antony J (2002) Design for six sigma: a breakthrough business improvement strategy for achieving competitive advantage. Work Stud 51:6–8

    Article  Google Scholar 

  • Aspenberg D, Jergeus J, Nilsson L (2012) Robust optimization of front members in a full frontal car impact. Eng Optim 45:245–264

    Article  Google Scholar 

  • Astori P, Impari F (2013) Crash response optimisation of helicopter seat and subfloor. Int J Crashworth 18:570–578

    Article  Google Scholar 

  • Avalle M, Chiandussi G (2007) Optimisation of a vehicle energy absorbing steel component with experimental validation. Int J Impact Eng 34:843–858

    Article  Google Scholar 

  • Avalle M, Chiandussi G, Belingardi G (2002) Design optimization by response surface methodology: application to crashworthiness design of vehicle structures. Struct Multidisc Optim 24:325–332

  • Bae GH, Huh H (2012) Comparison of the optimum designs of center pillar assembly of an auto-body between conventional steel and ahss with a simplified side impact analysis. Int J Automot Technol 13:205–213

    Article  Google Scholar 

  • Bandi P, Schmiedeler JP, Tovar A (2013) Design of crashworthy structures with controlled energy absorption in the hybrid cellular automaton framework. J Mech Des 135:091002

    Article  Google Scholar 

  • Baril C, Yacout S, Clement B (2011) Design for six sigma through collaborative multiobjective optimization. Comput Ind Eng 60:43–55

    Article  Google Scholar 

  • Belingardi G, Beyene AT, Koricho EG (2013) Geometrical optimization of bumper beam profile made of pultruded composite by numerical simulation. Compos Struct 102:217–225

    Article  Google Scholar 

  • Beyer H-G, Sendhoff B (2007) Robust optimization–a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218

    Article  MathSciNet  MATH  Google Scholar 

  • Bi J, Fang H, Wang Q, Ren X (2010) Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs. Finite Elem Anal Des 46:698–709

    Article  Google Scholar 

  • Bisagni C, Lanzi L, Ricci S (2002) Optimization of helicopter subfloor components under crashworthiness requirements using neural networks. J Aircr 39:296–304

    Article  Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford university press

  • Blumhardt R (2001) FEM - crash simulation and optimization. Int J Veh Des 26:331–347

    Article  Google Scholar 

  • Bojanowski C, Kulak RF (2011) Multi-objective optimisation and sensitivity analysis of a paratransit bus structure for rollover and side impact tests. Int J Crashworth 16:665–676

    Article  Google Scholar 

  • Borvik T, Hopperstad OS, Reyes A, Langseth M, Solomos G, Dyngeland T (2003) Empty and foam-filled circular aluminium tubes subjected to axial and oblique quasi-static loading. Int J Crashworth 8:481–494

    Article  Google Scholar 

  • Breyfogle III FW (2003) Implementing six sigma: smarter solutions using statistical methods. John Wiley & Sons

  • Chen WG (2001) Optimisation for minimum weight of foam-filled tubes under large twisting rotation. Int J Crashworth 6:223–241

    Article  Google Scholar 

  • Chen W, Allen JK, Tsui K-L, Mistree F (1996) A procedure for robust design: minimizing variations caused by noise factors and control factors. J Mech Des 118:478–485

    Article  Google Scholar 

  • Chen Z, Qiu H, Gao L, Li X, Li P (2014) A local adaptive sampling method for reliability-based design optimization using Kriging model. Struct Multidisc Optim 49:401–416

  • Chiandussi G, Avalle M (2002) Maximisation of the crushing performance of a tubular device by shape optimisation. Comput Struct 80:2425–2432

    Article  Google Scholar 

  • Cho Y-B, Bae C-H, Suh M-W, Sin H-C (2006) A vehicle front frame crash design optimization using hole-type and dent-type crush initiator. Thin-Walled Struct 44:415–428

    Article  Google Scholar 

  • Cho Y-B, Bae C-H, Suh M-W, Sin H-C (2008) Maximisation of crash energy absorption by crash trigger for vehicle front frame using the homogenisation method. Int J Veh Des 46:23–50

    Article  Google Scholar 

  • Choi W, Park G (1999) Transformation of dynamic loads into equivalent static loads based on modal analysis. Int J Numer Methods Eng 46:29–43

    Article  MATH  Google Scholar 

  • Christensen J, Bastien C, Blundell MV (2012) Effects of roof crush loading scenario upon body in white using topology optimisation. Int J Crashworth 17:29–38

    Article  Google Scholar 

  • Christensen J, Bastien C, Blundell MV, Batt PA (2013) Buckling considerations and cross-sectional geometry development for topology optimised body in white. Int J Crashworth 18:319–330

    Article  Google Scholar 

  • Chuang C, Yang R (2012) Benchmark of topology optimization methods for crashworthiness design. In: 12th International LS-DYNA Users Conference, Dearborn, Michigan, USA

  • Chuang C, Yang R, Li G, Mallela K, Pothuraju P (2008) Multidisciplinary design optimization on vehicle tailor rolled blank design. Struct Multidisc Optim 35:551–560

  • Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. Evol Comput, IEEE Trans 8:256–279

    Article  Google Scholar 

  • Costas M, Díaz J, Romera L, Hernández S (2014) A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber. Int J Mech Sci 88:46–54

    Article  Google Scholar 

  • Couckuyt I, Deschrijver D, Dhaene T (2014) Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization. J Glob Optim 60:575–594

    Article  MathSciNet  MATH  Google Scholar 

  • Craig KJ, Stander N, Dooge DA, Varadappa S (2005) Automotive crashworthiness design using response surface-based variable screening and optimization. Eng Comput 22:38–61

    Article  MATH  Google Scholar 

  • Cristello N, Kim IY (2007) Multidisciplinary design optimization of a zero-emission vehicle chassis considering crashworthiness and hydroformability. Proc Instit Mech Eng Part D-J Automobile Eng 221:511–526

    Article  Google Scholar 

  • Das I, Dennis JE (1997) A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct Optimization 14:63–69

    Article  Google Scholar 

  • Davis SC, Diegel SW, Boundy RG (2013) Transportation energy data book. 32 edn., Oak Ridge National Lab

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol Comput, IEEE Trans 6:182–197

    Article  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis 2nd ed

  • Du Bois P et al. (2004) Vehicle crashworthiness and occupant protection

  • Duan S, Tao Y, Han X, Yang X, Hou S, Hu Z (2014) Investigation on structure optimization of crashworthiness of fiber reinforced polymers materials. Composit Part B-Eng 60:471–478

    Article  Google Scholar 

  • Duddeck F (2008) Multidisciplinary optimization of car bodies. Struct Multidisc Optim 35:375–389

  • Esfahlani SS, Shirvani H, Shirvani A, Nwaubani S, Mebrahtu H, Chirwa C (2013) Hexagonal honeycomb cell optimisation by way of meta-model techniques. Int J Crashworth 18:264–275

    Article  Google Scholar 

  • Fang H, Rais-Rohani M, Liu Z, Horstemeyer MF (2005) A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Comput Struct 83:2121–2136

    Article  Google Scholar 

  • Fang J, Gao Y, Sun G, Zhang Y, Li Q (2014a) Crashworthiness design of foam-filled bitubal Structures with uncertainty. Int J Non-Linear Mech

  • Fang J, Gao Y, Sun G, Zhang Y, Li Q (2014a) Parametric analysis and multiobjective optimization for functionally graded foam-filled thin-wall tube under lateral impact. Comput Mater Sci 90:265–275

    Article  Google Scholar 

  • Fang J, Gao Y, Sun G, Xu C, Li Q (2015a) Multiobjective robust design optimization of fatigue life for a truck cab. Reliab Eng Syst Saf 135:1–8

    Article  Google Scholar 

  • Fang J, Gao Y, Sun G, Zheng G, Li Q (2015b) Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness. Int J Mech Sci 103:63–73

    Article  Google Scholar 

  • Fang J, Gao Y, An X, Sun G, Chen J, Li Q (2016) Design of transversely-graded foam and wall thickness structures for crashworthiness criteria. Compos Part B 92:338–349

    Article  Google Scholar 

  • Farkas L, Moens D, Donders S, Vandepitte D (2012) Optimisation study of a vehicle bumper subsystem with fuzzy parameters. Mech Syst Signal Process 32:59–68

    Article  Google Scholar 

  • Forrester A, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45:50–79

    Article  Google Scholar 

  • Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. John Wiley & Sons

  • Forsberg J, Nilsson L (2006) Evaluation of response surface methodologies used in crashworthiness optimization. Int J Impact Eng 32:759–777

    Article  Google Scholar 

  • Forsberg J, Nilsson L (2007) Topology optimization in crashworthiness design. Struct Multidisc Optim 33:1–12

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat:1–67

  • Fu Y, Sahin KH (2004) Better Optimization of Nonlinear Uncertain Systems (BONUS) for vehicle structural design. Ann Oper Res 132:69–84

    Article  MATH  Google Scholar 

  • Gedikli H (2013) Crashworthiness optimization of foam-filled tailor-welded tube using coupled finite element and smooth particle hydrodynamics method. Thin-Walled Struct 67:34–48

    Article  Google Scholar 

  • Ghamarian A, Zarei H (2012) Crashworthiness investigation of conical and cylindrical end-capped tubes under quasi-static crash loading. Int J Crashworth 17:19–28

    Article  Google Scholar 

  • Goel T, Haftka R, Shyy W, Queipo NV (2007) Ensemble of surrogates. Struct Multidisc Optim 33:199–216

  • Goel T, Stander N, Lin Y-Y (2010) Efficient resource allocation for genetic algorithm based multi-objective optimization with 1,000 simulations. Struct Multidisc Optim 41:421–432

  • Gu L, Yang R, Tho CH, Makowski M, Faruque O, Li Y (2001) Optimization and robustness for crashworthiness of side impact. Int J Veh Des 26:348–360

    Article  Google Scholar 

  • Gu J, Li GY, Dong Z (2012) Hybrid and adaptive meta-model-based global optimization. Eng Optim 44:87–104

    Article  Google Scholar 

  • Gu X, Sun G, Li G, Mao L, Li Q (2013) A Comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure. Struct Multidisc Optim 48:669–684

  • Guo L, Tovar A, Penninger CL, Renaud JE (2011) Strain-based topology optimisation for crashworthiness using hybrid cellular automata. Int J Crashworth 16:239–252

    Article  Google Scholar 

  • Gupta NK, Velmurugan R (1999) Axial compression of empty and foam filled composite conical shells. J Compos Mater 33:567–591

    Article  Google Scholar 

  • Haftka R, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global optimization with expensive functions–a survey. Struct Multidisc Optim 54:3–13

  • Hajela P, Lee E (1997) Topological optimization of rotorcraft subfloor structures for crashworthiness considerations. Comput Struct 64:65–76

    Article  MATH  Google Scholar 

  • Hamza K, Saitou K (2012) A co-evolutionary approach for design optimization via ensembles of surrogates with application to vehicle crashworthiness. J Mech Design 134

  • Hamza K, Shalaby M (2014) A framework for parallelized efficient global optimization with application to vehicle crashworthiness optimization. Eng Optim 46:1200–1221

    Article  Google Scholar 

  • Han J, Yamazaki K (2003) Crashworthiness optimization of S-shape square tubes. Int J Veh Des 31:72–85

    Article  Google Scholar 

  • Hanssen AG, Langseth M, Hopperstad OS (2000) Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. Int J Impact Eng 24:475–507

    Article  MATH  Google Scholar 

  • Hanssen AG, Langseth M, Hopperstad OS (2001) Optimum design for energy absorption of square aluminium columns with aluminium foam filler. Int J Mech Sci 43:153–176

    Article  MATH  Google Scholar 

  • Hanssen AG, Stobener K, Rausch G, Langseth M, Keller H (2006) Optimisation of energy absorption of an A-pillar by metal foam insert. Int J Crashworth 11:231–241

    Article  Google Scholar 

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1905–1915

    Article  Google Scholar 

  • Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006) Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Eng Syst Saf 91:1175–1209

    Article  Google Scholar 

  • Hohenbichler M, Rackwitz R (1982) First-order concepts in system reliability. Struct Saf 1:177–188

    Article  Google Scholar 

  • Hong UP, Park G (2003) Determination of the crash pulse and optimization of the crash components using the response surface approximate optimization. Proc Institution Mech Eng Part D-J Automobile Eng 217:203–213

    Article  Google Scholar 

  • Horstemeyer MF, Ren XC, Fang H, Acar E, Wang PT (2009) A comparative study of design optimisation methodologies for side-impact crashworthiness, using injury-based versus energy-based criterion. Int J Crashworth 14:125–138

    Article  Google Scholar 

  • Hou S, Li Q, Long S, Yang X, Li W (2007) Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria. Finite Elem Anal Des 43:555–565

    Article  Google Scholar 

  • Hou S, Li Q, Long S, Yanga X, Li W (2008a) Multiobjective optimization of multi-cell sections for the crashworthiness design. Int J Impact Eng 35:1355–1367

    Article  Google Scholar 

  • Hou S, Li Q, Long SY, Yang XJ, Li W (2008b) Multiobjective optimization of multi-cell sections for the crashworthiness design. Int J Impact Eng 35:1355–1367

    Article  Google Scholar 

  • Hou S, Li Q, Long S, Yang X, Li W (2009) Crashworthiness design for foam filled thin-wall structures. Mater Des 30:2024–2032

    Article  Google Scholar 

  • Hou S, Han X, Sun G, Long S, Li W, Yang X, Li Q (2011) Multiobjective optimization for tapered circular tubes. Thin-Walled Struct 49:855–863

    Article  Google Scholar 

  • Hou S, Dong D, Ren L, Han X (2012) Multivariable crashworthiness optimization of vehicle body by unreplicated saturated factorial design. Struct Multidisc Optim 46:891–905

  • Hou S, Liu T, Dong D, Han X (2014a) Factor screening and multivariable crashworthiness optimization for vehicle side impact by factorial design. Struct Multidisc Optim 49:147–167

  • Hou S, Tan W, Zheng Y, Han X, Li Q (2014b) Optimization design of corrugated beam guardrail based on RBF-MQ surrogate model and collision safety consideration. Adv Eng Softw 78:28–40

    Article  Google Scholar 

  • Hou S, Zhang Z, Yang X, Yin H, Li Q (2014c) Crashworthiness optimization of new thin-walled cellular configurations. Eng Comput 31:4–4

    Google Scholar 

  • Huang X, Xie YM, Lu G (2007) Topology optimization of energy-absorbing structures. Int J Crashworth 12:663–675

    Article  Google Scholar 

  • Hunkeler S, Duddeck F, Rayamajhi M, Zimmer H (2013) Shape optimisation for crashworthiness followed by a robustness analysis with respect to shape variables. Struct Multidisc Optim 48:367–378

  • Ingrassia T, Nigrelli V, Buttitta R (2013) A comparison of simplex and simulated annealing for optimization of a new rear underrun protective device. Eng Comput 29:345–358

    Article  Google Scholar 

  • Jacob GC, Fellers JF, Simunovic S, Starbuck JM (2002) Energy absorption in polymer composites for automotive crashworthiness. J Compos Mater 36:813–850

    Article  Google Scholar 

  • Jansson T, Nilsson L, Redhe M (2003) Using surrogate models and response surfaces in structural optimization – with application to crashworthiness design and sheet metal forming. Struct Multidisc Optim 25:129–140

  • Jeong SB, Yi SI, Kan CD, Nagabhushana V, Park G (2008) Structural optimization of an automobile roof structure using equivalent static loads. Proc Institution Mech Eng Part D-J Automobile Eng 222:1985–1995

    Article  Google Scholar 

  • Jeong SB, Yoon S, Xu S, Park G (2010) Non-linear dynamic response structural optimization of an automobile frontal structure using equivalent static loads. Proc Institution Mech Eng Part D-J Automobile Eng 224:489–501

    Article  Google Scholar 

  • Jiang Z, Gu M (2010) Optimization of a fender structure for the crashworthiness design. Mater Des 31:1085–1095

    Article  Google Scholar 

  • Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidisc Optim 23:1–13

  • Jin R, Du X, Chen W (2003) The use of metamodeling techniques for optimization under uncertainty. Struct Multidisc Optim 25:99–116

  • Kang B, Choi W, Park G (2001) Structural optimization under equivalent static loads transformed from dynamic loads based on displacement. Comput Struct 79:145–154

    Article  Google Scholar 

  • Kaushik A, Ramani A (2014) Topology optimization for nonlinear dynamic problems: considerations for automotive crashworthiness. Eng Optim 46:487–502

    Article  Google Scholar 

  • Kaya N, Oeztuerk F (2010) Multi-objective crashworthiness design optimisation of thin-walled tubes. Int J Veh Des 52:54–63

    Article  Google Scholar 

  • Keane AJ (2006) Statistical improvement criteria for use in multiobjective design optimization. AIAA J 44:879–891

    Article  Google Scholar 

  • Khakhali A, Nariman-zadeh N, Darvizeh A, Masoumi A, Notghi B (2010) Reliability-based robust multi-objective crashworthiness optimisation of S-shaped box beams with parametric uncertainties. Int J Crashworth 15:443–456

    Article  Google Scholar 

  • Kiani M, Gandikota I, Parrish A, Motoyama K, Rais-Rohani M (2013) Surrogate-based optimisation of automotive structures under multiple crash and vibration design criteria. Int J Crashworth 18:473–482

    Article  Google Scholar 

  • Kiani M, Motoyama K, Rais-Rohani M, Shiozaki H (2014) Joint stiffness analysis and optimization as a mechanism for improving the structural design and performance of a vehicle. Proc Instit Mech Eng Part D-J Automobile Eng 228:689–700

    Article  Google Scholar 

  • Kim HS (2001) Analysis of crash response of aluminium foam-filled front side rail of a passenger car. Int J Crashworth 6:189–207

    Article  Google Scholar 

  • Kim HS (2002) New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-Walled Struct 40:311–327

    Article  Google Scholar 

  • Kim HS, Chen W, Wierzbicki T (2002) Weight and crash optimization of foam-filled three-dimensional “S” frame. Comput Mech 28:417–424

    Article  MATH  Google Scholar 

  • Kim S-H, Kim H, Kim NJ (2015) Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518:77–79

    Article  Google Scholar 

  • Kinsey B, Liu Z, Cao J (2000) A novel forming technology for tailor-welded blanks. J Mater Process Technol 99:145–153

    Article  Google Scholar 

  • Koch PN, Simpson TW, Allen JK, Mistree F (1999) Statistical approximations for multidisciplinary design optimization: the problem of size. J Aircr 36:275–286

    Article  Google Scholar 

  • Koch PN, Yang R, Gu L (2004) Design for six sigma through robust optimization. Struct Multidisc Optim 26:235–248

    Article  Google Scholar 

  • Kurtaran H, Eskandarian A, Marzougui D, Bedewi NE (2002) Crashworthiness design optimization using successive response surface approximations. Comput Mech 29:409–421

    Article  MATH  Google Scholar 

  • Lanzi L, Bisagni C, Ricci S (2004a) Crashworthiness optimization of helicopter subfloor based on decomposition and global approximation. Struct Multidisc Optim 27:401–410

  • Lanzi L, Castelletti LML, Anghileri M (2004b) Multi-objective optimisation of composite absorber shape under crashworthiness requirements. Compos Struct 65:433–441

    Article  Google Scholar 

  • Lee Y, Ahn J-S, Park G Crash optimization of automobile frontal and side structures using equivalent static loads.In: 11th World Congress on Structural and Multidisciplinary Optimization, Sydney, NSW, Australia, 2015

  • Lee SH, Kim HY, Oh SI (2002) Cylindrical tube optimization using response surface method based on stochastic process. J Mater Process Technol 130:490–496

    Article  Google Scholar 

  • Lee I, Choi KK, Noh Y, Zhao L, Gorsich D (2011) Sampling-based stochastic sensitivity analysis using score functions for RBDO problems with correlated random variables. J Mech Des 133:021003

    Article  Google Scholar 

  • Lee S-J, Lee H-A, Yi S-I, Kim D-S, Yang HW, Park G (2013) Design flow for the crash box in a vehicle to maximize energy absorption. Proc Inst Mech Eng Part D-J Automobile Eng 227:179–200

    Article  Google Scholar 

  • Liang C-C, Le G-N (2009) Bus rollover crashworthiness under European standard: an optimal analysis of superstructure strength using successive response surface method. Int J Crashworth 14:623–639

    Article  Google Scholar 

  • Liao X, Li Q, Yang X, Li W, Zhang W (2008a) A two-stage multi-objective optimisation of vehicle crashworthiness under frontal impact. Int J Crashworth 13:279–288

    Article  Google Scholar 

  • Liao X, Li Q, Yang X, Zhang W, Li W (2008b) Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Struct Multidisc Optim 35:561–569

  • Liu Y (2008a) Crashworthiness design of multi-corner thin-walled columns. Thin-Walled Struct 46:1329–1337

    Article  Google Scholar 

  • Liu Y (2008b) Design optimisation of tapered thin-walled square tubes. Int J Crashworth 13:543–550

    Article  Google Scholar 

  • Liu Y (2008c) Optimum design of straight thin-walled box section beams for crashworthiness analysis. Finite Elem Anal Des 44:139–147

    Article  Google Scholar 

  • Liu Y (2010a) Crashworthiness design of thin-walled curved beams with box and channel cross sections. Int J Crashworth 15:413–423

    Article  Google Scholar 

  • Liu Y (2010b) Thin-walled curved hexagonal beams in crashes - FEA and design. Int J Crashworth 15:151–159

    Article  Google Scholar 

  • Liu S-T, Tong Z-Q, Tang Z-L, Zhang Z-H (2014) Design optimization of the S-frame to improve crashworthiness. Acta Mech Sin 30:589–599

    Article  Google Scholar 

  • Lönn D, Öman M, Nilsson L, Simonsson K (2009) Finite element based robustness study of a truck cab subjected to impact loading. Int J Crashworth 14:111–124

    Article  Google Scholar 

  • Lönn D, Fyllingen Ø, Nilssona L (2010) An approach to robust optimization of impact problems using random samples and meta-modelling. Int J Impact Eng 37:723–734

    Article  Google Scholar 

  • Lönn D, Bergman G, Nilsson L, Simonsson K (2011) Experimental and finite element robustness studies of a bumper system subjected to an offset impact loading. Int J Crashworth 16:155–168

    Article  Google Scholar 

  • Marklund PO, Nilsson L (2001) Optimization of a car body component subjected to side impact. Struct Multidisc Optim 21:383–392

    Article  Google Scholar 

  • Marsolek J, Reimerdes HG (2004) Energy absorption of metallic cylindrical shells with induced non-axisymmetric folding patterns. Int J Impact Eng 30:1209–1223

    Article  Google Scholar 

  • Marzbanrad J, Ebrahimi MR (2011) Multi-objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks. Thin-Walled Struct 49:1605–1615

    Article  Google Scholar 

  • Mayer RR, Kikuchi N, Scott RA (1996) Application of topological optimization techniques to structural crashworthiness. Int J Numer Methods Eng 39:1383–1403

    Article  MATH  Google Scholar 

  • McKittrick J et al (2010) Energy absorbent natural materials and bioinspired design strategies: A review. Mater Sci Eng C 30:331–342

    Article  Google Scholar 

  • Messac A, Puemi-Sukam C, Melachrinoudis E (2000a) Aggregate objective functions and Pareto frontiers: required relationships and practical implications. Optim Eng 1:171–188

    Article  MathSciNet  MATH  Google Scholar 

  • Messac A, Sundararaj GJ, Tappeta RV, Renaud JE (2000b) Ability of objective functions to generate points on nonconvex Pareto frontiers. AIAA J 38:1084–1091

  • Milho JF, Ambrósio JAC, Pereira MFOS (2004) Design of train crash experimental tests by optimization procedures. Int J Crashworth 9:483–493

    Article  Google Scholar 

  • Mohammadiha O, Beheshti H (2014) Optimization of functionally graded foam-filled conical tubes under axial impact loading. J Mech Sci Technol 28:1741–1752

    Article  Google Scholar 

  • Montgomery DC (1996) Desing and analysis of experiments. Wiley, New York, EUA

    Google Scholar 

  • Naceur H, Guo YQ, Ben-Elechi S (2006) Response surface methodology for design of sheet forming parameters to control springback effects. Comput Struct 84:1651–1663

    Article  Google Scholar 

  • Najafi A, Rais-Rohani M (2012) Sequential coupled process-performance simulation and multi-objective optimization of thin-walled tubes. Mater Des 41:89–98

    Article  Google Scholar 

  • Najafi A, Acar E, Rais-Rohani M (2014) Multi-objective robust design of energy-absorbing components using coupled process–performance simulations. Eng Optim 46:146–164

    Article  Google Scholar 

  • Nguyen VS, Wen G, Yin H, Van TP (2014) Optimisation design of reinforced S-shaped frame structure under axial dynamic loading. Int J Crashworth 19:385–393

    Article  Google Scholar 

  • Oman M, Nilsson L (2010) Structural optimization of product families subjected to multiple crash load cases. Struct Multidisc Optim 41:797–815

    Article  Google Scholar 

  • O’Neill B (2009) Preventing passenger vehicle occupant injuries by vehicle design—a historical perspective from IIHS. Traffic Injury Prevent 10:113–126

    Article  Google Scholar 

  • Ortmann C, Schumacher A (2013) Graph and heuristic based topology optimization of crash loaded structures. Struct Multidisc Optim 47:839–854

    Article  MATH  Google Scholar 

  • Pan F, Zhu P (2011a) Design optimisation of vehicle roof structures: benefits of using multiple surrogates. Int J Crashworth 16:85–95

    Article  Google Scholar 

  • Pan F, Zhu P (2011b) Lightweight design of vehicle front-end structure: contributions of multiple surrogates. Int J Veh Des 57:124–147

    Article  Google Scholar 

  • Pan F, Zhu P, Zhang Y (2010) Metamodel-based lightweight design of B-pillar with TWB structure via support vector regression. Comput Struct 88:36–44

    Article  Google Scholar 

  • Park G (2011) Technical overview of the equivalent static loads method for non-linear static response structural optimization. Struct Multidisc Optim 43:319–337

  • Park G, Lee T-H, Lee KH, Hwang K-H (2006) Robust design: an overview. AIAA J 44:181–191

    Article  Google Scholar 

  • Parkinson A, Sorensen C, Pourhassan N (1993) A general approach for robust optimal design. J Mech Des 115:74–80

    Article  Google Scholar 

  • Parrish A, Rais-Rohani M, Najafi A (2012) Crashworthiness optimisation of vehicle structures with magnesium alloy parts. Int J Crashworth 17:259–281

    Article  Google Scholar 

  • Patel NM, Kang B-S, Renaud JE, Tovar A (2009) Crashworthiness design using topology optimization. J Mech Design 131

  • Paz J, Díaz J, Romera L, Costas M (2014) Crushing analysis and multi-objective crashworthiness optimization of GFRP honeycomb-filled energy absorption devices. Finite Elem Anal Des 91:30–39

    Article  Google Scholar 

  • Pedersen CBW (2003a) Topology optimization design of crushed 2D-frames for desired energy absorption history. Struct Multidisc Optim 25:368–382

    Article  Google Scholar 

  • Pedersen CBW (2003b) Topology optimization for crashworthiness of frame structures. Int J Crashworth 8:29–39

    Article  Google Scholar 

  • Pedersen CBW (2004) Crashworthiness design of transient frame structures using topology optimization. Comput Methods Appl Mech Eng 193:653–678

    Article  MATH  Google Scholar 

  • Qi C, Yang S (2014) Crashworthiness and lightweight optimisation of thin-walled conical tubes subjected to an oblique impact. Int J Crashworth 19:334–351

    Article  Google Scholar 

  • Qi C, Yang S, Dong F (2012) Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading. Thin-Walled Struct 59:103–119

    Article  Google Scholar 

  • Qu X, Haftka R (2004) Reliability-based design optimization using probabilistic sufficiency factor. Struct Multidisc Optim 27:314–325

    Article  Google Scholar 

  • Rais-Rohani M, Solanki KN, Acar E, Eamon CD (2010) Shape and sizing optimisation of automotive structures with deterministic and probabilistic design constraints. Int J Veh Des 54:309–338

    Article  Google Scholar 

  • Rakheja S, Balike M, Hoa SV (1999) Study of an energy dissipative under-ride guard for enhancement of crashworthiness in a car-truck collision. Int J Veh Des 22:29–53

    Article  Google Scholar 

  • Ramakrishna S (1997) Microstructural design of composite materials for crashworthy structural applications. Mater Des 18:167–173

    Article  Google Scholar 

  • Ramu P, Kim NH, Haftka R (2007) Error amplification in failure probability estimates of small errors in surrogates. In: SAE 2007 World Congress. Detroit, Michigan, USA

  • Rangavajhala S, Mahadevan S (2013) Design optimization for robustness in multiple performance functions. Struct Multidisc Optim 47:523–538

    Article  MathSciNet  MATH  Google Scholar 

  • Raquel C, Naval P (2005) An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 2005 conference on Genetic and evolutionary computation, Washington DC, USA. New York, NY, USA, pp 257-264

  • Redhe M, Nilsson L (2004) Optimization of the new Saab 9-3 exposed to impact load using a space mapping technique. Struct Multidisc Optim 27:411–420

    Google Scholar 

  • Redhe M, Nilsson L (2006) A multipoint version of space mapping optimization applied to vehicle crashworthiness design. Struct Multidisc Optim 31:134–146

    Article  Google Scholar 

  • Redhe M, Forsberg J, Jansson T, Marklund PO, Nilsson L (2002) Using the response surface methodology and the D-optimality criterion in crashworthiness related problems. Struct Multidisc Optim 24:185–194

    Article  Google Scholar 

  • Redhe M, Giger M, Nilsson L (2004) An investigation of structural optimization in crashworthiness design using a stochastic approach - a comparison of stochastic optimization and the response surface methodology. Struct Multidisc Optim 27:446–459

    Google Scholar 

  • Reid SR, Reddy TY (1986) Static and dynamic crushing of tapered sheet metal tubes of rectangular cross-section. Int J Mech Sci 28:623–637

    Article  Google Scholar 

  • Reyes A, Hopperstad O, Hanssen A, Langseth M (2004) Modeling of material failure in foam-based components. Int J Impact Eng 30:805–834

    Article  Google Scholar 

  • Roux W (2011) Topology Design using LS-TaSC™ Version 2 and LS-DYNA®

  • Rzesnitzek T, Müllerschön H, Günther FC, Wozniak M (2002) Two-Stage stochastic and deterministic optimization. In: 1st DYNAMORE Users’ Forum, Bad Mergentheim, German

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4:409–423

    Article  MathSciNet  MATH  Google Scholar 

  • Santosa SP, Wierzbicki T, Hanssen AG, Langseth M (2000) Experimental and numerical studies of foam-filled sections. Int J Impact Eng 24:509–534

    Article  Google Scholar 

  • Schonlau M (1998) Computer experiments and global optimization. University of Waterloo

  • Seitzberger M, Rammerstorfer FG, Degischer HP, Gradinger R (1997) Crushing of axially compressed steel tubes filled with aluminium foam. Acta Mech 125:93–105

    Article  MATH  Google Scholar 

  • Seitzberger M, Rammerstorfer FG, Gradinger R, Degischer HP, Blaimschein M, Walch C (2000) Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. Int J Solids Struct 37:4125–4147

    Article  Google Scholar 

  • Shakeri M, Mirzaeifar R, Salehghaffari S (2007) New insights into the collapsing of cylindrical thin-walled tubes under axial impact load. Proc Instit Mech Eng Part C-J Mech Eng Sci 221:869–885

    Article  Google Scholar 

  • Shariati M, Allahbakhsh HR, Saemi J, Sedighi M (2010) Optimization of foam filled spot-welded column for the crashworthiness design. Mechanika:10-16

  • Sheldon A, Helwig E, Cho Y-B (2011) Investigation and application of multi-disciplinary optimization for automotive body-in-white development. In: 8th European LS-DYNA Users conference, Strasbourg, 23–24

  • Shi Q, Hagiwara I (2000) Optimal design method to automobile problems using holographic neural network’s approximation. Jpn J Ind Appl Math 17:321–339

    Article  MathSciNet  MATH  Google Scholar 

  • Shi Y, Zhu P, Shen L, Lin Z (2007) Lightweight design of automotive front side rails with TWB concept. Thin-Walled Struct 45:8–14

    Article  Google Scholar 

  • Shi L, Yang R, Zhu P (2012) A method for selecting surrogate models in crashworthiness optimization. Struct Multidisc Optim 46:159–170

    Article  Google Scholar 

  • Shi L, Yang R, Zhu P (2013a) An adaptive response surface method for crashworthiness optimization. Eng Optim 45:1365–1377

    Article  Google Scholar 

  • Shi L, Zhu P, Yang R-J, Lin S-P (2013b) Adaptive sampling-based RBDO method for vehicle crashworthiness design using Bayesian metric and stochastic sensitivity analysis with independent random variables. Int J Crashworth 18:331–342

    Article  Google Scholar 

  • Shimoyama K, Shinkyu J, Obayashi S (2013) Kriging-surrogate-based optimization considering expected hypervolume improvement in non-constrained many-objective test problems. In: Evolutionary Computation (CEC), 2013 I.E. Congress on, 658–665

  • Shin MK, Park KJ, Park G (2007) Optimization of structures with nonlinear behavior using equivalent loads. Comput Methods Appl Mech Eng 196:1154–1167

    Article  MATH  Google Scholar 

  • Shin MK, Yi SI, Kwon OT, Park G (2008) Structural optimization of the automobile frontal structure for pedestrian protection and the low-speed impact test. Proc Instit Mech Eng Part D-J Automobile Eng 222:2373–2387

    Article  Google Scholar 

  • Simpson TW, Poplinski J, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17:129–150

    Article  MATH  Google Scholar 

  • Simpson TW, Booker AJ, Ghosh D, Giunta AA, Koch PN, Yang R (2004) Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct Multidisc Optim 27:302–313

    Article  Google Scholar 

  • Sinha K (2007) Reliability-based multiobjective optimization for automotive crashworthiness and occupant safety. Struct Multidisc Optim 33:255–268

    Article  Google Scholar 

  • Sinha K, Krishnan R, Raghavendra D (2007) Multi-objective robust optimisation for crashworthiness during side impact. Int J Veh Des 43:116–135

    Article  Google Scholar 

  • Smola A, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

    Article  MathSciNet  Google Scholar 

  • Sobester A, Leary SJ, Keane AJ (2004) A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Struct Multidisc Optim 27:371–383

    Article  Google Scholar 

  • Song X, Sun G, Li G, Gao W, Li Q (2013) Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Struct Multidisc Optim 47:221–231

    Article  MathSciNet  MATH  Google Scholar 

  • Soto CA (2004) Structural topology optimization for crashworthiness. Int J Crashworth 9:277–283

    Article  Google Scholar 

  • Stander N (2012) An efficient new sequential strategy for multi-objective optimization using LS-OPT®. Paper presented at the 12th International LS-DYNA Users Conference, Dearborn, Michigan, USA

  • Stander N An Adaptive Surrogate-Assisted Strategy for Multi-Objective Optimization. In: 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, Florida, USA, 2013.

  • Su R, Gui L, Fan Z (2011) Multi-objective optimization for bus body with strength and rollover safety constraints based on surrogate models. Struct Multidisc Optim 44:431–441

    Article  MathSciNet  MATH  Google Scholar 

  • Sun G, Li G, Hou S, Zhou S, Li W, Li Q (2010a) Crashworthiness design for functionally graded foam-filled thin-walled structures. Mater Sci Eng A-Struct Mater Properties Microstruct Process 527:1911–1919

    Article  Google Scholar 

  • Sun G, Li G, Stone M, Li Q (2010b) A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials. Comput Mater Sci 49:500–511

    Article  Google Scholar 

  • Sun G, Li G, Zhou S, Li H, Hou S, Li Q (2011) Crashworthiness design of vehicle by using multiobjective robust optimization. Struct Multidisc Optim 44:99–110

    Article  Google Scholar 

  • Sun G, Song X, Baek S, Li Q (2014a) Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel. Struct Multidisc Optim 49:897–913

    Article  Google Scholar 

  • Sun G, Xu F, Li G, Li Q (2014b) Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. Int J Impact Eng 64:62–74

    Article  Google Scholar 

  • Tang L, Wang H, Li G, Xu F (2013) Adaptive heuristic search algorithm for discrete variables based multi-objective optimization. Struct Multidisc Optim 48:821–836

    Article  MathSciNet  Google Scholar 

  • Tarlochan F, Samer F, Hamouda AMS, Ramesh S, Khalid K (2013) Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Struct 71:7–17

    Article  Google Scholar 

  • Toksoy AK, Güden M (2011) The optimisation of the energy absorption of partially Al foam-filled commercial 1050H14 and 6061T4 Al crash boxes. Int J Crashworth 16:97–109

    Article  Google Scholar 

  • Tovar A, Patel NM, Kaushik AK, Renaud JE (2007) Optimality conditions of the hybrid cellular automata for structural optimization. AIAA J 45:673–683

    Article  Google Scholar 

  • Tran T, Hou S, Han X, Tan W, Nguyen N (2014) Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes. Thin-Walled Struct 82:183–195

    Article  Google Scholar 

  • Tu J, Choi KK, Park YH (1999) A new study on reliability-based design optimization. J Mech Des 121:557–564

    Article  Google Scholar 

  • Viana FA, Haftka R, Steffen V Jr (2009a) Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct Multidisc Optim 39:439–457

    Article  Google Scholar 

  • Viana FAC, Haftka R, Steffen V (2009b) Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct Multidisc Optim 39:439–457

  • Viana FC, Haftka R, Watson L (2013) Efficient global optimization algorithm assisted by multiple surrogate techniques. J Glob Optim 56:669–689

    Article  MATH  Google Scholar 

  • Viana FA, Simpson TW, Balabanov V, Toropov V (2014) Metamodeling in multidisciplinary design optimization: how far have we really come? AIAA J 52:670–690

    Article  Google Scholar 

  • Villa A, Strano M, Mussi V (2011) Optimization of Design and Manufacturing Process of Metal Foam Filled Anti-Intrusion Bars. 14th International Conference on Material Forming Esaform, 2011 Proceedings 1353:1656-1661

  • Vining GG, Myers RH (1990) Combining Taguchi and response surface philosophies: a dual response approach. J Qual Technol 22

  • Wang GG (2003) Adaptive response surface method using inherited latin hypercube design points. J Mech Des 125:210–220

    Article  Google Scholar 

  • Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129:370–380

    Article  Google Scholar 

  • Wang X, Shi L (2014) A new metamodel method using Gaussian process based bias function for vehicle crashworthiness design. Int J Crashworth 19:311–321

    Article  Google Scholar 

  • Wang H, Li GY, Li E (2010) Time-based metamodeling technique for vehicle crashworthiness optimization. Comput Methods Appl Mech Eng 199:2497–2509

    Article  MATH  Google Scholar 

  • Wang H, Li E, Li GY (2011a) Probability-based least square support vector regression metamodeling technique for crashworthiness optimization problems. Comput Mech 47:251–263

    Article  MATH  Google Scholar 

  • Wang H, Shan S, Wang GG, Li G (2011b) Integrating least square support vector regression and mode pursuing sampling optimization for crashworthiness design. J Mech Des 133

  • Wierzbicki T, Abramowicz W (1983) On the crushing mechanics of thin-walled structures. J Appl Mech-T Asme 50:727–734

    Article  MATH  Google Scholar 

  • Witowski K, Erhart A, Schumacher P, Müllerschön H (2012) Topology optimization for crash

  • Wu JP, Nusholtz GS, Bilkhu S (2002) Optimization of vehicle crash pulses in relative displacement domain. Int J Crashworth 7:397–413

    Google Scholar 

  • Xiang YJ, Wang Q, Fan ZJ, Fang HB (2006) Optimal crashworthiness design of a spot-welded thin-walled hat section. Finite Elem Anal Des 42:846–855

    Article  Google Scholar 

  • Xu F, Sun G, Li G, Li Q (2013) Crashworthiness design of multi-component tailor-welded blank (TWB) structures. Struct Multidisc Optim 48:653–667

    Article  Google Scholar 

  • Xu H, Majcher MT, Chuang C, Fu Y, Yang R (2014) Comparative benchmark studies of response surface model-based optimization and direct multidisciplinary design optimization. SAE Technical Paper

  • Xu H, Chuang C, Yang R (2015) A data mining-based strategy for direct multidisciplinary optimization. SAE Int J Mater Manufact 8:357–363

    Google Scholar 

  • Yamazaki K, Han J (1998) Maximization of the crushing energy absorption of tubes. Struct Optim 16:37–46

    Article  Google Scholar 

  • Yang S, Qi C (2013) Multiobjective optimization for empty and foam-filled square columns under oblique impact loading. Int J Impact Eng 54:177–191

    Article  Google Scholar 

  • Yang R, Tseng L, Nagy L, Cheng J (1994) Feasibility study of crash optimization. ASME 2:549–556

    Google Scholar 

  • Yang R, Akkerman A, Anderson DF, Faruque O, Gu L (2000) Robustness optimization for vehicular crash simulations. Comput Sci Eng 2:8–13

    Article  Google Scholar 

  • Yang R, Wang N, Tho C, Bobineau J, Wang B (2005) Metamodeling development for vehicle frontal impact simulation. J Mech Des 127:1014–1020

    Article  Google Scholar 

  • Yao W, Chen X, Luo W, van Tooren M, Guo J (2011) Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog Aerosp Sci 47:450–479

    Article  Google Scholar 

  • Yi SI, Lee JY, Park G (2012) Crashworthiness design optimization using equivalent static loads. Proc Instit Mech Eng Part D-J Automobile Eng 226:23–38

    Article  Google Scholar 

  • Yildiz AR, Solanki KN (2012) Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int J Adv Manuf Technol 59:367–376

    Article  Google Scholar 

  • Yin H, Wen G, Gan N (2011a) Crashworthiness design for honeycomb structures under axial dynamic loading. Int J Comput Methods 8:863–877

    Article  Google Scholar 

  • Yin H, Wen G, Hou S, Chen K (2011b) Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes. Mater Des 32:4449–4460

    Article  Google Scholar 

  • Yin H, Wen G, Hou S, Qing Q (2013) Multiobjective crashworthiness optimization of functionally lateral graded foam-filled tubes. Mater Des 44:414–428

    Article  Google Scholar 

  • Yin H, Wen G, Fang H, Qing Q, Kong X, Xiao J, Liu Z (2014a) Multiobjective crashworthiness optimization design of functionally graded foam-filled tapered tube based on dynamic ensemble metamodel. Mater Des 55:747–757

    Article  Google Scholar 

  • Yin H, Wen G, Liu Z, Qing Q (2014b) Crashworthiness optimization design for foam-filled multi-cell thin-walled structures. Thin-Walled Struct 75:8–17

    Article  Google Scholar 

  • Youn BD, Choi KK (2004a) A new response surface methodology for reliability-based design optimization. Comput Struct 82:241–256

    Article  Google Scholar 

  • Youn BD, Choi KK (2004b) Selecting probabilistic approaches for reliability-based design optimization. AIAA J 42:124–131

    Article  Google Scholar 

  • Youn BD, Choi KK, Yang R, Gu L (2004) Reliability-based design optimization for crashworthiness of vehicle side impact. Struct Multidisc Optim 26:272–283

    Article  Google Scholar 

  • Zabaras N, Ganapathysubramanian S, Li Q (2003) A continuum sensitivity method for the design of multi-stage metal forming processes. Int J Mech Sci 45:325–358

    Article  MATH  Google Scholar 

  • Zarei HR, Kroger M (2006) Multiobjective crashworthiness optimization of circular aluminum tubes. Thin-Walled Struct 44:301–308

    Article  Google Scholar 

  • Zarei HR, Kroger M (2007) Crashworthiness optimization of empty and filled aluminum crash boxes. Int J Crashworth 12:255–264

    Article  Google Scholar 

  • Zarei H, Kroger M (2008a) Optimum honeycomb filled crash absorber design. Mater Des 29:193–204

    Article  Google Scholar 

  • Zarei HR, Kroger M (2008b) Bending behavior of empty and foam-filled beams: structural optimization. Int J Impact Eng 35:521–529

    Article  Google Scholar 

  • Zarei HR, Kroger M (2008c) Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Struct 46:214–221

    Article  Google Scholar 

  • Zarei H, Kröger M, Albertsen H (2008) An experimental and numerical crashworthiness investigation of thermoplastic composite crash boxes. Compos Struct 85:245–257

    Article  Google Scholar 

  • Zerpa LE, Queipo NV, Pintos S, Salager J-L (2005) An optimization methodology of alkaline–surfactant–polymer flooding processes using field scale numerical simulation and multiple surrogates. J Pet Sci Eng 47:197–208

    Article  Google Scholar 

  • Zhang Y, Zhu P, Chen G (2007a) Lightweight design of automotive front side rail based on robust optimisation. Thin-Walled Struct 45:670–676

    Article  Google Scholar 

  • Zhang Y, Zhu P, Chen G, Lin Z (2007b) Study on structural lightweight design of automotive front side rail based on response surface method. J Mech Des 129:553–557

    Article  Google Scholar 

  • Zhang Y, Zhu P, Chen G, Lin ZQ (2007c) Study on structural lightweight design of automotive front side rail based on response surface method. J Mech Des 129:553–557

    Article  Google Scholar 

  • Zhang X, Cheng G, Wang B, Zhang H (2008) Optimum design for energy absorption of bitubal hexagonal columns with honeycomb core. Int J Crashworth 13:99–107

    Article  Google Scholar 

  • Zhang Z, Liu S, Tang Z (2009) Design optimization of cross-sectional configuration of rib-reinforced thin-walled beam. Thin-Walled Struct 47:868–878

    Article  Google Scholar 

  • Zhang B, Yang J, Zhong Z (2010) Optimisation of vehicle side interior panels for occupant safety in side impact. Int J Crashworth 15:617–623

    Article  Google Scholar 

  • Zhang Y, Sun G, Li G, Luo Z, Li Q (2012) Optimization of foam-filled bitubal structures for crashworthiness criteria. Mater Des 38:99–109

    Article  Google Scholar 

  • Zhang S, Zhu P, Chen W (2013a) Crashworthiness-based lightweight design problem via new robust design method considering two sources of uncertainties. Proc Instit Mech Eng Part C-J Mech Eng Sci 227:1381–1391

    Article  Google Scholar 

  • Zhang S, Zhu P, Chen W, Arendt P (2013b) Concurrent treatment of parametric uncertainty and metamodeling uncertainty in robust design. Struct Multidisc Optim 47:63–76

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Wen Z, Zhang H (2014a) Axial crushing and optimal design of square tubes with graded thickness. Thin-Walled Struct 84:263–274

    Article  Google Scholar 

  • Zhang Y, Sun G, Xu X, Li G, Li Q (2014b) Multiobjective crashworthiness optimization of hollow and conical tubes for multiple load cases. Thin-Walled Struct 82:331–342

    Article  Google Scholar 

  • Zheng G, Wu S, Sun G, Li G, Li Q (2014) Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes. Int J Mech Sci 87:226–240

    Article  Google Scholar 

  • Zhou XJ, Ma YZ, Li XF (2011) Ensemble of surrogates with recursive arithmetic average. Struct Multidisc Optim 44:651–671

  • Zhou Q, Wu X, Xia Y, Cai W (2014) Spot weld layout optimization of tube crash performance with manufacturing constraints. J Manufact Sci Eng-Trans Asme 136

  • Zhu P, Shi YL, Zhang KZ, Lin ZQ (2008) Optimum design of an automotive inner door panel with a tailor-welded blank structure. Proc Instit Mech Eng Part D-J Automobile Eng 222:1337–1348

    Article  Google Scholar 

  • Zhu P, Zhang Y, Chen G (2009) Metamodel-based lightweight design of an automotive front-body structure using robust optimization. Proc Instit Mech Eng Part D-J Automobile Eng 223:1133–1147

    Article  Google Scholar 

  • Zhu P, Zhang Y, Chen G (2011) Metamodeling development for reliability-based design optimization of automotive body structure. Comput Ind 62:729–741

    Article  Google Scholar 

  • Zhu P, Pan F, Chen W, Zhang S (2012) Use of support vector regression in structural optimization: application to vehicle crashworthiness design. Math Comput Simul 86:21–31

  • Zhu P, Pan F, Chen W, Viana FAC (2013) Lightweight design of vehicle parameters under crashworthiness using conservative surrogates. Comput Ind 64:280–289

    Article  Google Scholar 

  • Zhu F, Jiang B, Chou CC (2016) On the development of a new design methodology for vehicle crashworthiness based on data mining theory. SAE Technical Paper

  • Zurada JM (1992) Introduction to artificial neural systems vol 8. West publishing company, St. Paul

    Google Scholar 

Download references

Acknowledgments

This work was supported by Australian Research Council (ARC) DECRA and future fellowship scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyong Sun or Qing Li.

Appendix

Appendix

Table 1 Injury-based metrics
Table 2 Energy-based metrics
Table 3 Surrogate models in crashworthiness optimization
Table 4 Algorithms used in crashworthiness Optimization
Table 5 Research works on crashworthiness optimization with uncertainties
Table 6 Crashworthiness optimization of energy absorbers with different configurations
Table 7 Crashworthiness optimization for automotive structures
Table 8 Crashworthiness optimization for automotive components

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Sun, G., Qiu, N. et al. On design optimization for structural crashworthiness and its state of the art. Struct Multidisc Optim 55, 1091–1119 (2017). https://doi.org/10.1007/s00158-016-1579-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1579-y

Keywords

Navigation