Skip to main content
Log in

A geometry projection method for the topology optimization of plate structures

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We introduce a topology optimization method for the stiffness-based design of structures made of plates. Our method renders topologies made distinctly of plates, thereby producing designs that better conform to manufacturing processes tailored to plate structures, such as those that employ stock plates that are cut and joined by various means. To force the structural members to be plates, we employ the geometry projection method to project an analytical description of a set of fixed-thickness plates onto a continuous density field defined over a 3-dimensional, uniform finite element grid for analysis. A size variable is assigned to each plate and penalized so that the optimizer can entirely remove a plate from the design. The proposed method accommodates the case where the plates in the topology are rectangular and solid, and the case where the boundaries of the plates can change and holes can be introduced. The latter case is attained by composition with a free density field. We present examples that demonstrate the effectiveness of our method and discuss future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Units are not provided as the optimal topology for the compliance problem is solely dictated by the volume fraction under the aforementioned material assumptions.

  2. We note that in our plate representation, as can be inferred from Fig. 2, if either the length l or the width w of the plate medial surface is zero, the plate collapses to a cylinder of radius t/2 with semi-spherical ends of the same radius; and if both l and w are zero, the plate collapses to a sphere of radius t/2.

  3. Even though not observed in this example, it is also entirely possible that a plate can collapse into a cylindrical bar or a near-sphere.

References

  • Bangerth W, Hartmann R, Kanschat G (2007) deal.II – a general purpose object oriented finite element library. ACM Trans Math Softw 33(4):24/1–24/27

    Article  MathSciNet  Google Scholar 

  • Bangerth W, Heister T, Heltai L, Kanschat G, Kronbichler M, Maier M, Turcksin B, Young TD (2015) The deal.II library, version 8.2. Archive of Numerical Software 3

  • Bell B, Norato J, Tortorelli D (2012) A geometry projection method for continuum-based topology optimization of structures. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p 5485

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory methods and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26):3443–3459

    Article  MATH  Google Scholar 

  • Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16(5):1190–1208

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(3):313–346

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng G, Mei Y, Wang X (2006) A feature-based structural topology optimization method. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer, pp 505–514

  • Cheng KT, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323

    Article  MathSciNet  MATH  Google Scholar 

  • Chung J, Lee K (1997) Optimal design of rib structures using the topology optimization technique. Proc IME C J Mech Eng Sci 211(6):425–437

    Article  MathSciNet  Google Scholar 

  • Dems K, Mróz Z, Szelag D (1989) Optimal design of rib-stiffeners in disks and plates. Int J Solids Struct 25(9):973–998

    Article  MATH  Google Scholar 

  • Deng J, Chen W (2016) Design for structural flexibility using connected morphable components based topology optimization. Science China Technological Sciences 1–13

  • Díaz AR, Lipton R, Soto CA, etal (1995) A new formulation of the problem of optimum reinforcement of Reissner-Mindlin plates. Comput Methods Appl Mech Eng 123(1):121–139

    Article  MathSciNet  MATH  Google Scholar 

  • Ding X, Yamazaki K (2004) Stiffener layout design for plate structures by growing and branching tree model (application to vibration-proof design). Struct Multidiscip Optim 26(1-2):99–110

    Article  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081,009

    Article  Google Scholar 

  • Khosravi P, Sedaghati R, Ganesan R (2007) Optimization of stiffened panels considering geometric nonlinearity. J Mech Mater Struct 2(7):1249–1265

    Article  Google Scholar 

  • Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index, IFAC Symposium Computer Aided Design of Control Systems. Zürich, Switzerland

    MATH  Google Scholar 

  • Lam Y, Santhikumar S (2003) Automated rib location and optimization for plate structures. Struct Multidiscip Optim 25(1):35–45

    Article  Google Scholar 

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620

    Article  Google Scholar 

  • Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry projection method for shape optimization. Int J Numer Methods Eng 60(14):2289–2312

    Article  MathSciNet  MATH  Google Scholar 

  • Norato J, Bell B, Tortorelli D (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327

    Article  MathSciNet  Google Scholar 

  • Persson PO, Strang G (2004) A simple mesh generator in Matlab. SIAM Rev 46(2):329–345

    Article  MathSciNet  MATH  Google Scholar 

  • Rozvany GI, Olhoff N, Cheng KT, Taylor JE (1982) On the solid plate paradox in structural optimization. J Struct Mech 10(1):1–32

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN (2013) Optimal design of flexural systems: beams, grillages, slabs, plates and shells. Elsevier

  • Sigmund O (1994) Design of material structures using topology optimization PhD thesis, DCAMM, Technical University of Denmark

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization*. J Struct Mech 25(4):493–524

    Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes- a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MathSciNet  MATH  Google Scholar 

  • Wang F, Jensen JS, Sigmund O (2012) High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts. Photonics Nanostruct Fundam Appl 10(4):378–388

    Article  Google Scholar 

  • Zhou M, Wang MY (2013) Engineering feature design for level set based structural optimization. Comput Aided Des 45(12):1524–1537

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Support from Caterpillar to conduct this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián A. Norato.

Additional information

In memoriam G. I. N. Rozvany

This work was supported by Caterpillar Inc.

A Appendix: Sensitivity analysis

A Appendix: Sensitivity analysis

1.1 A.1 Plates geometry projection sensitivities

From (15) and (18), we obtain the design sensitivity of the effective density for all plates as

$$\begin{array}{@{}rcl@{}} \partial_{z} \tilde{\rho} &=& \frac{1-\rho_{\min}^{p}}{\tilde{\rho}^{p-1}} \sum\limits_{q=1}^{N_{q}} \hat{\rho}_{q}^{p-1} \left[ \zeta(\alpha_{q},s) \partial_{d_{q}} \rho_{q} \partial_{z} d_{q}\right.\\ &&\left.+ \rho_{q} \partial_{z} \zeta(\alpha_{q},s) \right] \end{array} $$
(53)

where from (2), the design sensitivity of the density for a single plate is given by

$$ \partial_{d_{q}} \rho_{q}= \left\{\begin{array}{ll} 0 & \text{if} d_{q} > r \\ \frac{3}{4r} \left[ \left( \frac{d_{q}}{r} \right)^{2} -1 \right] & \text{if} -r \leq d_{q} \leq r \\ 0 & \text{if} d_{q} < - r \end{array}\right. $$
(54)

We note that if z corresponds to α q then \(\partial _{\alpha _{q}} d_{q} = 0\) and from (16)

$$ \partial_{x} \zeta(x,s) = \frac{1+s}{[1 + s(1-x)]^{2}} $$
(55)

Otherwise, z ζ(α q , s) = 0 and z d q is given by the results of the following section (and it equals zero if zz q ).

An interest insight on the sensitivity of the geometry projection is that if one looks at z d q as the design sensitivity of the closest point on ω to x, then the first term in square brackets in (53) is a convective term and the second term is an advective term. This is in contrast to level set topology optimization methods which only employ convective sensitivities.

1.2 A.2 Distance function sensitivities

We proceed to derive sensitivities for the distance function with respect to the plate design parameters of (3). For simplicity, in this section we drop the q subscript and note that all quantities refer to a single plate. To simplify the derivation, we first perform the following algebraic manipulation of (4) to eliminate the square root on the right-hand side (RHS) of the equation:

$$\begin{array}{@{}rcl@{}} d^{2} &=& (\| \hat{\mathbf{x}}^{\perp} \|^{2} + H({\Delta}_{1}) {{\Delta}_{1}^{2}} + H({\Delta}_{2}) {{\Delta}_{2}^{2}})\\ &&-2(d+t/2)(t/2) + t^{2}/4 \end{array} $$
(56)

Differentiating with respect to some design variable z, and since we have assumed the plate thickness to be constant, we have

$$ \partial_{z} d \,=\, \frac{1}{2d+t} \left[ \partial_{z} \| \hat{\mathbf{x}}^{\perp} \|^{2} + \partial_{z}(H({\Delta}_{1}) {{\Delta}_{1}^{2}}) + \partial_{z}(H({\Delta}_{2}) {{\Delta}_{2}^{2}}) \right] $$
(57)

The above expression reveals a requirement of our method. If d = −t/2, then the denominator on the RHS of (57) is zero and the derivative is not defined. However, if we require that the sample window for the projection in ( 2 ) is smaller than the plate thickness, i.e. that r < t/2, then d ρ from (54) will be 0 when |d| ≥ t/2, hence z d need not be computed. This also addresses the issue of the signed distance function potentially being not unique, i.e. if there are two portions of ω to which the signed distance from x is the same; this would occur, for example, if x lies on the medial surface and dt/2. This requirement of our method was also shown in Norato et al. (2015).

To obtain the sensitivities with respect to the individual design parameters in (3), we therefore obtain the individual sensitivities on the RHS of (57). Let us start with the sensitivities with respect to the plate center point x c . We first note that

$$ \| \hat{\mathbf{x}}^{\perp} \|^{2} = (\hat{\mathbf{x}}^{\perp})^{T} \hat{\mathbf{x}}^{\perp} = \hat{\mathbf{x}}^{T} (\mathsf{P}^{\perp})^{T} \mathsf{P}^{\perp} \hat{\mathbf{x}} = \hat{\mathbf{x}}^{T} \mathsf{P}^{\perp} \hat{\mathbf{x}} $$
(58)

where we used the fact that the projection P is symmetric and idempotent. Therefore,

$$ \partial_{z} \| \hat{\mathbf{x}}^{\perp} \|^{2} = 2 (\partial_{z} \hat{\mathbf{x}})^{T} \textsf{P}^{\perp} \hat{\mathbf{x}} + \hat{\mathbf{x}}^{T} \partial_{z} \textsf{P}^{\perp} \hat{\mathbf{x}} $$
(59)

From (5) and (6) we have that \(\nabla _{\mathbf {x_{c}}} \hat {\mathbf {x}} = - \textsf {I}\) and \(\nabla _{\mathbf {x_{c}}} \textsf {P}^{\perp } = \textsf {0}\) respectively, hence

$$ \nabla_{\mathbf{x_{c}}} \| \hat{\mathbf{x}}^{\perp} \|^{2} = -2 \textsf{P}^{\perp} \hat{\mathbf{x}} = -2 \hat{\mathbf{x}}^{\perp} $$
(60)

To obtain \(\nabla _{\mathbf {x_{c}}} (H({\Delta }_{1}){{\Delta }_{1}^{2}})\) we first use the product rule:

$$ \partial_{z} (H({\Delta}_{1}){{\Delta}_{1}^{2}}) = \partial_{z} H({\Delta}_{1}){{\Delta}_{1}^{2}} + H({\Delta}_{1}) \partial_{z} ({{\Delta}_{1}^{2}}) $$
(61)

The derivative of the Heaviside function is given by H (x) = δ(x), where δ(x) = {1 if x = 0, 0 otherwise } is the Dirac delta function. Therefore, z H1) is non-zero only when Δ1 = 0. However, since the first term on the RHS is multiplied by \({{\Delta }_{1}^{2}}\), we have that this term is always zero. Hence, using the chain rule we find

$$ \partial_{z} (H({\Delta}_{1}){{\Delta}_{1}^{2}}) = 2 {\Delta}_{1} H({\Delta}_{1}) \partial_{z} {\Delta}_{1} $$
(62)

Similarly, for the third term in (57) we have

$$ \partial_{z} (H({\Delta}_{2}){{\Delta}_{2}^{2}}) = 2 {\Delta}_{2} H({\Delta}_{2}) \partial_{z} {\Delta}_{2} $$
(63)

From (9), we have that

$$\begin{array}{@{}rcl@{}} \partial_{z} {\Delta}_{1} &=& \partial_{z} | \hat{x}^{\parallel}_{1} | - \partial_{z} (l/2) \end{array} $$
(64)
$$\begin{array}{@{}rcl@{}} \partial_{z} {\Delta}_{2} &=& \partial_{z} | \hat{x}^{\parallel}_{2} | - \partial_{z} (w/2). \end{array} $$
(65)

Clearly, \(\nabla _{\mathbf {x_{c}}} (l/2) = \vec {0}\), and so we need only look at \(\partial _{z} | \hat {x}^{\parallel }_{1} |\). Here we note another requirement of our method: the derivative of the absolute function |x| is not defined at x = 0. However, if l > 0 then H1) = 0 if \( | \hat {x}^{\parallel }_{1} | = 0 < l/2\), and from (62) and (64), \(2 {\Delta }_{1} H({\Delta }_{1}) \partial _{z} | \hat {x}^{\parallel }_{1} | = 0\). Hence, we require in our method that l > 0 and, using a similar argument, that w > 0. This requirement circumvents the problem that when l or w are zero the closest point on ω to \(\hat {\mathbf {x}}\) is no longer unique.

To compute \(\partial _{z} | \hat {x}^{\parallel }_{1} |\), we note that

$$ | \hat{x}^{\parallel}_{1} |^{2} = (\hat{x}^{\parallel}_{1})^{2} = (\hat{\mathbf{x}} \cdot \hat{\mathbf{e}}_{1})^{2} = \hat{\mathbf{x}}^{T} \hat{\mathbf{e}}_{1} \hat{\mathbf{e}}_{1}^{T} \hat{\mathbf{x}} = \hat{\mathbf{x}}^{T} (\hat{\mathbf{e}}_{1} \otimes \hat{\mathbf{e}}_{1}) \hat{\mathbf{x}} $$
(66)

Differentiating, we have

$$ 2 | \hat{x}^{\parallel}_{1} | \partial_{z} | \hat{x}^{\parallel}_{1} | = 2 \partial_{z} \hat{\mathbf{x}}^{T} (\hat{\mathbf{e}}_{1} \otimes \hat{\mathbf{e}}_{1})\hat{\mathbf{x}} + \hat{\mathbf{x}}^{T} \partial_{z}(\hat{\mathbf{e}}_{1} \otimes \hat{\mathbf{e}}_{1}) \hat{\mathbf{x}} $$
(67)

Since z (aa) = 2Sym(a z a), where the Sym(A) operator returns the symmetric part of tensor A, we then have

$$ \partial_{z} | \hat{x}^{\parallel}_{1} | = \frac{1}{| \hat{x}^{\parallel}_{1} |} \left[ \partial_{z} \hat{\mathbf{x}} (\hat{\mathbf{e}}_{1} \otimes \hat{\mathbf{e}}_{1}) + \hat{\mathbf{x}}^{T} \text{Sym}(\hat{\mathbf{e}}_{1} \otimes \partial_{z} \hat{\mathbf{e}}_{1}) \right] \hat{\mathbf{x}} $$
(68)

A similar expression follows for \(\partial _{z} | \hat {x}^{\parallel }_{2} |\). With \(\nabla _{\mathbf {x_{c}}} \hat {\mathbf {e}}_{1} = \textsf {0}\) and using (7) and (8), we have

$$ \nabla_{\mathbf{x_{c}}} | \hat{x}^{\parallel}_{1} | = -\frac{1}{| \hat{x}^{\parallel}_{1} |} (\hat{\mathbf{e}}_{1} \otimes \hat{\mathbf{e}}_{1}) \hat{\mathbf{x}} = -\frac{1}{| \hat{x}_{1} |} \hat{\mathbf{e}}_{1} \hat{x}_{1}= - \text{sgn}(\hat{x}_{1}) \hat{\mathbf{e}}_{1} $$
(69)

Combining (62), (64) and (69) we obtain

$$ \nabla_{\mathbf{x_{c}}} (H({\Delta}_{1}) {{\Delta}_{1}^{2}}) = -2 \text{sgn}(\hat{x}_{1}) {\Delta}_{1}H({\Delta}_{1}) \hat{\mathbf{e}}_{1} $$
(70)

A similar derivation for the third term on the RHS of (57), and using (65), gives

$$ \nabla_{\mathbf{x_{c}}} (H({\Delta}_{2}) {{\Delta}_{2}^{2}}) = -2 \text{sgn}(\hat{x}_{2}) {\Delta}_{2}H({\Delta}_{2}) \hat{\mathbf{e}}_{2} $$
(71)

Collecting (60), (70) and (71), and using (57) we finally obtain the sensitivity of the distance with respect to the center point of the plate as

$$ \nabla_{\mathbf{x_{c}}} d \,=\, -\frac{1}{d+\frac{t}{2}} \left[\hat{\mathbf{x}}^{\perp} + \text{sgn}(\hat{x}_{1}) {\Delta}_{1}H({\Delta}_{1}) \hat{\mathbf{e}}_{1}+ \text{sgn}(\hat{x}_{2}) {\Delta}_{2}H({\Delta}_{2}) \hat{\mathbf{e}}_{2} \right] $$
(72)

To obtain sensitivities of the distance with respect to the Euler angles of the plate, we first note from (10) that

$$\begin{array}{@{}rcl@{}} \partial_{\psi} \hat{\mathbf{e}}_{1} &=& \mathsf{R}_{\psi}^{\prime} \mathsf{R}_{\theta} \mathsf{R}_{\phi} \mathbf{e}_{1} \\ &=& \mathsf{R}_{\psi}^{\prime} \mathsf{R}_{\theta} \mathsf{R}_{\phi} (\mathsf{R}_{\psi} \mathsf{R}_{\theta} \mathsf{R}_{\phi})^{-1} \hat{\mathbf{e}}_{1} \\ &=& \mathsf{R}_{\psi}^{\prime} \mathsf{R}_{\theta} \mathsf{R}_{\phi} \mathsf{R}_{\phi}^{-1} \mathsf{R}_{\theta}^{-1} \mathsf{R}_{\psi}^{-1} \hat{\mathbf{e}}_{1} \\ &=& \underset{A_{\psi}}{\underbrace{\mathsf{R}_{\psi}^{\prime} \mathsf{R}_{\psi}^{T}}} \hat{\mathbf{e}}_{1} \end{array} $$
(73)
$$\begin{array}{@{}rcl@{}} \partial_{\theta} \hat{\mathbf{e}}_{1} &=& \mathsf{R}_{\psi} \mathsf{R}_{\theta}^{\prime} \mathsf{R}_{\phi} \mathbf{e}_{1} \\ &=& \underset{A_{\theta}}{\underbrace{\mathsf{R}_{\psi} \mathsf{R}_{\theta}^{\prime} \mathsf{R}_{\theta}^{T} \mathsf{R}_{\psi}^{{T}}}} \hat{\mathbf{e}}_{1} \end{array} $$
(74)
$$\begin{array}{@{}rcl@{}} \partial_{\phi} \hat{\mathbf{e}}_{1} &=& \mathsf{R}_{\psi} \mathsf{R}_{\theta} \mathsf{R}_{\phi}^{\prime} \mathbf{e}_{1}\\ &=& \underset{A_{\phi}}{\underbrace{\mathsf{R}_{\psi} \mathsf{R}_{\theta} \mathsf{R}_{\phi}^{\prime} \mathsf{R}_{\phi}^{T} \mathsf{R}_{\theta}^{T} \mathsf{R}_{\psi}^{{T}}}} \hat{\mathbf{e}}_{1} \end{array} $$
(75)

where

$$\begin{array}{@{}rcl@{}} \mathsf{R}_{\psi}^{\prime} &=& \left[ \begin{array}{ccc} -\sin \psi & \cos \psi & 0 \\ -\cos \psi & -\sin \psi & 0 \\ 0 & 0 & 0 \end{array} \right] \end{array} $$
(76)
$$\begin{array}{@{}rcl@{}} \mathsf{R}_{\theta}^{\prime} &=& \left[ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & -\sin \theta & \cos \theta \\ 0 & -\cos \theta & -\sin \theta \end{array} \right] \end{array} $$
(77)
$$\begin{array}{@{}rcl@{}} \mathsf{R}_{\phi}^{\prime} &=& \left[ \begin{array}{ccc} -\sin \phi & \cos \phi & 0 \\ -\cos \phi & -\sin \phi & 0 \\ 0 & 0 & 0 \end{array} \right] \end{array} $$
(78)

and we used the fact that R ψ , R θ and R ϕ are orthogonal, hence their inverses equal their transposes. It can be shown the above defined tensors A β , β ∈ {ψ, θ, ϕ} are skew-symmetric like the R β , i.e. \(\textsf {A}_{\beta }^{T} = -\textsf {A}_{\beta }\). As such, there is an axial vector w = Axial(A) = [A 32, A 13, A 21]T associated with each of these tensors such that

$$ \textsf{A}_{\beta} \mathbf{a} = \mathbf{w}_{\beta} \wedge \mathbf{a} $$
(79)

for any \(\mathbf {a} \in \mathbb {R}^{3}\), where ∧ denotes the wedge or cross product. It can be readily verified that the axial vectors for the A β of (73)–(75) are given by

$$\begin{array}{@{}rcl@{}} \mathbf{w}_{\psi} &\!:=\!& \text{Axial}(\textsf{A}_{\psi}) \,=\, [0, 0, -1]^{T} \end{array} $$
(80)
$$\begin{array}{@{}rcl@{}} \mathbf{w}_{\theta} &\!:=\!& \text{Axial}(\textsf{A}_{\theta}) |\,=\, [-\cos \psi, \sin \psi, 0]^{T} \end{array} $$
(81)
$$\begin{array}{@{}rcl@{}} \mathbf{w}_{\phi} &\!:=\!& \text{Axial}(\textsf{A}_{\phi}) \,=\, [-\sin \psi \sin \theta, -\cos \psi \sin \theta, -\cos \theta]^{T} \\ \end{array} $$
(82)

For the sensitivity of the first term on the RHS of (57) with respect to β ∈ {ψ, θ, ϕ}, we use (59) and the fact that \(\partial _{\beta } \hat {\textbf {x}} = \vec {0}\) to obtain

$$ \partial_{\beta} \| \hat{\textbf{x}}^{\perp} \|^{2} = \hat{\textbf{x}}^{T} \partial_{\beta} \textsf{P}^{\perp} \hat{\textbf{x}} $$
(83)

where from (6) we have

$$ \partial_{\beta} \textsf{P}^{\perp} = -2 \text{Sym}(\partial_{\beta} \hat{\mathbf{e}}_{1} \otimes \hat{\mathbf{e}}_{1} +\partial_{\beta} \hat{\mathbf{e}}_{2} \otimes \hat{\mathbf{e}}_{2} ) $$
(84)

With \(\partial _{\beta } \hat {\mathbf {e}}_{1}\) and \(\partial _{\beta } \hat {\mathbf {e}}_{2}\) given by one of (7375), (84) becomes

$$\begin{array}{@{}rcl@{}} \partial_{\beta} \textsf{P}^{\perp} &=& -2 \text{Sym} \left[ \textsf{A}_{\beta} \hat{\mathbf{e}}_{1} \otimes \hat{\mathbf{e}}_{1} + \textsf{A}_{\beta} \hat{\mathbf{e}}_{2} \otimes \hat{\mathbf{e}}_{2} \right]\\ &=& -2 \text{Sym} \left[ \textsf{A}_{\beta} (\hat{\mathbf{e}}_{1} \otimes \hat{\mathbf{e}}_{1} + \hat{\mathbf{e}}_{2} \otimes \hat{\mathbf{e}}_{2}) \right]\\ &=& -2 \text{Sym} (\textsf{A}_{\beta}\textsf{P}^{\parallel}) \end{array} $$
(85)

From the above and from (83) we obtain the sensitivity of the first term on the RHS of (57) with respect to any of the three Euler angles as

$$\begin{array}{@{}rcl@{}} \partial_{\beta} \| \hat{\textbf{x}}^{\perp} \|^{2} &=& -2 \hat{\textbf{x}}^{T} \text{Sym} (\textsf{A}_{\beta} \textsf{P}^{\parallel} ) \hat{\textbf{x}} \\ &=& - \hat{\textbf{x}}^{T} \left( \textsf{A}_{\beta} \textsf{P}^{\parallel} + (\textsf{P}^{\parallel})^{T} \textsf{A}_{\beta}^{T} \right) \hat{\textbf{x}} \\ &=& - \left( \textsf{A}_{\beta}^{T} \hat{\textbf{x}} \right)^{T} \left( \textsf{P}^{\parallel} \hat{\textbf{x}} \right) - \left( \textsf{P}^{\parallel} \hat{\textbf{x}} \right)^{T} \left( \textsf{A}_{\beta}^{T} \hat{\textbf{x}} \right) \\ &=& -2 \hat{\textbf{x}}^{T} \textsf{A}_{\beta} \hat{\textbf{x}}^{\parallel} \end{array} $$
(86)

where we used the fact that P is symmetric. A similar procedure and Eqns. (62), (63), (64), (65), and (68) render the sensitivities of the second and third terms on the RHS of (57) with respect to any of the three Euler angles as

$$\begin{array}{@{}rcl@{}} \partial_{\beta} (H({\Delta}_{1}){{\Delta}_{1}^{2}}) &=& -\frac{2 H({\Delta}_{1}) {\Delta}_{1}} {| \hat{x}^{\parallel}_{1} |} \hat{\textbf{x}}^{T} \text{sym} \left[ \textsf{A}_{\beta} (\hat{\mathbf{e}}_{1} \otimes \hat{\mathbf{e}}_{1}) \right] \hat{\mathbf{x}} \\ &=& -2 \text{sgn}(\hat{x}_{1}) H({\Delta}_{1}) {\Delta}_{1} \hat{\mathbf{x}}^{T} \textsf{A}_{\beta} \hat{\mathbf{e}}_{1} \end{array} $$
(87)
$$\begin{array}{@{}rcl@{}} \partial_{\beta} (H({\Delta}_{2}){{\Delta}_{2}^{2}}) &=& -\frac{2 H({\Delta}_{2}) {\Delta}_{2}}{| \hat{x}^{\parallel}_{2} |} \hat{\mathbf{x}}^{T} \text{sym} \left[ \textsf{A}_{\beta} (\hat{\mathbf{e}}_{2} \otimes \hat{\mathbf{e}_{2}}) \right] \hat{\mathbf{x}} \\ &=& -2 \text{sgn}(\hat{x}_{2}) H({\Delta}_{2}) {\Delta}_{2} \hat{\mathbf{x}}^{T} \textsf{A}_{\beta} \hat{\mathbf{e}}_{2} \end{array} $$
(88)

Combining (86), (87) and (88), and using (57) and (79) we finally obtain the sensitivity of the distance with respect to any of the Euler angles of a plate as

$$\begin{array}{@{}rcl@{}} \partial_{\beta} d &=& - \frac{1}{d+\frac{t}{2}} \hat{\mathbf{x}} \cdot \big[ \mathbf{w}_{\beta} \wedge \big(\hat{\mathbf{x}}^{\parallel} + \text{sgn}(\hat{x}_{1}) H({\Delta}_{1}) {\Delta}_{1} \hat{\mathbf{e}}_{1}\\ &&+ \text{sgn}(\hat{x}_{2}) H({\Delta}_{2}) {\Delta}_{2} \hat{\mathbf{e}}_{2} \big) \big] \end{array} $$
(89)

with w β given by one of (8082).

We now proceed to obtain the sensitivities of the distance with respect to the length and width of the plate. With \(\partial _{l} \hat {\textbf {x}} = \partial _{w} \hat {\textbf {x}} = \vec {0}\) from (5) and l P = w P=0 from (6), we have from (59)

$$ \partial_{l} \| \hat{\textbf{x}}^{\perp} \|^{2} = \partial_{w} \| \hat{\textbf{x}}^{\perp} \|^{2} = 0 $$
(90)

Also, \(\partial _{l} \hat {\mathbf {e}}_{1} = \partial _{l} \hat {\mathbf {e}}_{2} = \partial _{w} \hat {\mathbf {e}}_{1} = \partial _{w} \hat {\mathbf {e}}_{2} = \vec {0}\) from (10). Consequently, from (68) we find that \(\partial _{l} | \hat {x}^{\parallel }_{1} | = \partial _{w} | \hat {x}^{\parallel }_{1} | = \partial _{l} | \hat {x}^{\parallel }_{2} | = \partial _{w} | \hat {x}^{\parallel }_{2} | = 0\), and so from (64) and (65) we have that l Δ1 = w Δ2 = −1/2 and w Δ1 = l Δ2 = 0. Therefore, from (62) and (63) we find

$$\begin{array}{@{}rcl@{}} \partial_{l} (H({\Delta}_{1}) {{\Delta}_{1}^{2}}) &=& - H({\Delta}_{1}) {\Delta}_{1} \quad\,\,\,\partial_{w} (H({\Delta}_{1}) {{\Delta}_{1}^{2}}) = 0 \end{array} $$
(91)
$$\begin{array}{@{}rcl@{}} \partial_{l} (H({\Delta}_{2}) {{\Delta}_{1}^{2}}) &=& 0 \,\,\,\,\,\quad\qquad \qquad \partial_{w} (H({\Delta}_{2}) {{\Delta}_{2}^{2}}) = - H({\Delta}_{2}) {\Delta}_{2} \end{array} $$
(92)

From (9091) we finally obtain the sensitivities of the distance with respect to the length and width of the plate as

$$\begin{array}{@{}rcl@{}} \partial_{l} d &=& -\frac{1}{2d+t} H({\Delta}_{1}) {\Delta}_{1} \end{array} $$
(93)
$$\begin{array}{@{}rcl@{}} \partial_{w} d &=& -\frac{1}{2d+t} H({\Delta}_{2}) {\Delta}_{2} \end{array} $$
(94)

Finally, we recall that the distance does not depend on the size variable α, therefore

$$ \partial_{\alpha} d = 0 $$
(95)

To summarize, the sensitivities of the distance with respect to the design parameters of a plate are given by (72), (89), (93), (94) and (95). The derivations in this section not only lead to succinct, elegant expressions, but most importantly they substantially reduce the amount of floating point operations needed to compute the distance sensitivities and therefore they are highly preferred over a naive differentiation.

A final remark is worth noting: the appearance of the Heaviside function in these sensitivities does not render them discontinuous, because H1) and H2) are multiplied by Δ1 and Δ2 respectively wherever they appear in the sensitivities; therefore, even though H1) and H2) jump from zero to one when Δ1 and Δ2 go from being negative to zero, Δ1 = 0 and Δ2 = 0, and therefore the corresponding terms in the sensitivities are still zero. This is consistent with Norato et al. (2015), where it was shown that the sensitivities are continuous across branches of the distance function to a bar.

1.3 A.3 Composite Density Sensitivities (Plates with Holes)

From (20), the sensitivities of the composite density are given by

$$ \partial_{z} \breve{\rho} = \frac{1}{2 \breve{\rho}} \left[ \partial_{z} \tilde{\rho} \zeta(\bar{\chi},s) + \tilde{\rho} \partial_{\bar{\chi}} \zeta (\bar{\chi},s) \partial_{z} \bar{\chi} \right] $$
(96)

In the afore expression, \(\partial _{z} \tilde {\rho }\) is given by (53) and \(\partial _{\bar {\chi }} \zeta (\bar {\chi },s)\) can be obtained from (55). The sensitivities of the filtered free density are more readily expressed in the discretized version of the filter (50). Using the quotient rule and after some simplification, we have

$$ \partial_{z} \bar{\chi} = \frac{1}{D} \sum\limits_{j \in \mathcal{N}_{i}^{\epsilon}} G_{ij} \left[ (\chi_{j} - \bar{\chi}_{i}) \partial_{z} \tilde{\rho}_{j} + \tilde{\rho}_{j} \partial_{z} \chi_{j} \right] $$
(97)

If z corresponds to a plate design parameter (i.e. if zz q ), then z χ(y) = 0 and \(\partial _{z} \tilde {\rho }\) can be computed from (53); on the other hand, if z corresponds to one of the elemental free densities χ j , then \(\partial _{z} \tilde {\rho } = 0\), and since

$$ \partial_{\chi_{j}} \chi_{i} = \left\{\begin{array}{ll} 1 & \text{if}\, i=j \\ 0 & \text{otherwise} \end{array}\right. $$
(98)

then in this case the entire (97) reduces to

$$ \partial_{\chi_{j}} \bar{\chi} =\frac{G_{ij} \tilde{\rho}_{j}}{D} $$
(99)

1.4 A.4 Placement Bound Constraints Sensitivities

The sensitivities of the j-th component of the aggregate placement bound constraints of (33) and (34) are respectively given by

$$\begin{array}{@{}rcl@{}} \partial_{z} KS_{\max}(c_{j}) &=& e^{-\kappa KS_{\max}} \sum\limits_{i} e^{\kappa c_{j}} \partial_{z} c_{j} \end{array} $$
(100)
$$\begin{array}{@{}rcl@{}} \partial_{z} KS_{\min}(c_{j}) &=& e^{\kappa KS_{\min}} \sum\limits_{i} e^{-\kappa c_{j}} \partial_{z} c_{j} \end{array} $$
(101)

where the superscript (i) corresponding to corner i = 1, … , 4 and the subscript q corresponding to plate q have been dropped for brevity, with the understanding that the above expressions lead to 24 equations per plate. The z c j can be obtained from (25) as

$$\begin{array}{@{}rcl@{}} \nabla_{\mathbf{x_{c}}} \mathbf{c}_{q}^{(i)} &=& \textsf{I} \end{array} $$
(102)
$$\begin{array}{@{}rcl@{}} \partial_{\beta} \mathbf{c}_{q}^{(i)}&=& \mathbf{w}_{\beta} \wedge \left[ \frac{l_{q}}{2} \hat{\mathbf{e}}_{1_{q}} + \frac{w_{q}}{2} \hat{\mathbf{e}}_{2_{q}} \right] \end{array} $$
(103)
$$\begin{array}{@{}rcl@{}} \partial_{l} \mathbf{c}_{q}^{(i)} &=& \frac{1}{2} \hat{\mathbf{e}}_{1_{q}} \end{array} $$
(104)
$$\begin{array}{@{}rcl@{}} \partial_{w} \mathbf{c}_{q}^{(i)} &=& \frac{1}{2} \hat{\mathbf{e}}_{2_{q}} \end{array} $$
(105)

with w β given by one of (8082). Clearly z c j = 0 if zz q since the locations of the corners of the medial surface of a plate only depend on the design parameters of that plate.

1.5 A.5 Compliance and volume fraction sensitivities

Using adjoint sensitivity analysis (cf., for example, Bendsøe and Sigmund (2003)), the compliance sensitivity can be found as

$$ \partial_{z} {\Theta} = -{\int}_{\Omega} \partial_{z} \breve{\rho}(\mathbf{x}, \mathbf{Z}, s, \chi) \nabla \mathbf{u} \cdot \mathbb{C}_{o} \nabla \mathbf{u} \; dv $$
(106)

The corresponding expression on the finite element discretization with element-wise discretized densities is given by

$$ \partial_{z} {\Theta} = - \sum\limits_{i}^{N_{el}} \partial_{z} \breve{\rho}_{i} \mathbf{U}_{i}^{T} \mathbf{K}_{i_{o}} \mathbf{U}_{i} $$
(107)

where N e l is the number of elements in the mesh, U i and \(\mathbf {K}_{i_{o}}\) are the vector of nodal displacements and solid stiffness matrix for element i respectively, and \(\partial _{z} \breve {\rho }_{i}\) can be computed from the composite density sensitivity of (96) for design with variable topology plates, or from the effective density of (53) for design with solid, rectangular plates.

The design sensitivity of the volume fraction in (36) is simply given by

$$ \partial_{z} v_{f} = \frac{1}{| {\Omega} |} {\int}_{\Omega} \partial_{z} \breve{\rho}(\mathbf{x}, \mathbf{Z}, 0, \chi) dv $$
(108)

and the corresponding expression on the finite element discretization is

$$ \partial_{z} v_{f} = \frac{1}{| {\Omega} |} \sum\limits_{i}^{N_{el}} \partial_{z} \breve{\rho}_{i} V_{i} $$
(109)

where V i is the volume of element i. As before, we note the important difference that (109) is computed with s = 0, whereas (107) is computed with s > 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Norato, J.A., Gain, A.L. et al. A geometry projection method for the topology optimization of plate structures. Struct Multidisc Optim 54, 1173–1190 (2016). https://doi.org/10.1007/s00158-016-1466-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1466-6

Keywords

Navigation