Skip to main content
Log in

Global blending optimization of laminated composites with discrete material candidate selection and thickness variation

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A method capable of simultaneous topology and thickness optimization of laminated composites has previously been published by one of the authors. Mass constrained compliance minimization subject to certain manufacturing constraints was solved on basis of interpolation schemes with penalization. In order to obtain large patchwise material candidate continuity while also accommodating variable laminate thickness, a bi-linear stiffness parameterization was introduced, causing a non-convex problem. In this present work, we introduce an alternative problem formulation that holds identical capabilities but is, however, convex in the original mixed binary nested form. Convexity is the foremost important property of optimization problems, and the proposed method can guarantee the global or near-global optimal solution; unlike most topology optimization methods. The material selection is limited to a distinct choice among predefined numbers of candidates. The laminate thickness is variable but the number of plies must be integer. We solve the convex mixed binary non-linear programming problem by an outer approximation cutting-plane method augmented with a few heuristics to accelerate the convergence rate. The capabilities of the method and the effect of active versus inactive manufacturing constraints are demonstrated on several numerical examples of limited size, involving at most 320 binary variables. Most examples are solved to guaranteed global optimality and may constitute benchmark examples for popular topology optimization methods and heuristics based on solving sequences of non-convex problems. The results will among others demonstrate that the difficulty of the posed problem is highly dependent upon the composition of the constitutive properties of the material candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved elements. Int J Numer Methods Eng 2:419–451

    Article  Google Scholar 

  • Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer Math 4(1):238–252

    Article  MathSciNet  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology Optimization - Theory, Methods and Applications. Springer Verlag, Berlin Heidelberg

    Google Scholar 

  • Bloomfield M, Herencia JE, Weaver PM (2008) Optimization of anisotropic laminated composite plates incorporating nonconventional ply orientations. In: Proceeding of the 49th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. Schaumburg, IL

  • Bloomfield M, Herencia J, Weaver P (2010) Analysis and benchmarking of meta-heuristic techniques for lay-up optimization. Comput Struct 88(5):272–282

    Article  Google Scholar 

  • Bloomfield MW, Diaconu CG, Weaver PM (2009) On feasible regions of lamination parameters for lay-up optimization of laminated composites. Proc Royal Soc A: Math, Phys Eng Sci 465(2104):1123–1143

    Article  MathSciNet  MATH  Google Scholar 

  • Bonami P, Biegler LT, Conn AR, Cornuéjols G, Grossmann IE, Laird CD, Lee J, Lodi A, Margot F, Sawaya N et al (2008) An algorithmic framework for convex mixed integer nonlinear programs. Discr Opt 5(2):186–204

    Article  MATH  Google Scholar 

  • Bruyneel M (2010) SFP – a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multi Opt 43(1):17–27

    Article  Google Scholar 

  • Duran MA, Grossmann IE (1986) An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Programm 36(3):307–339

    Article  MathSciNet  MATH  Google Scholar 

  • Duysinx P, Guillermos M, Gao T, Bruyneel M (2013) Comparison of parameterization schemes for solving the discrete material optimization problem of composite structures. In: Proceedings of 10th World Congress of Structural and Multidisciplinary Optimization (WCSMO), Florida, USA

  • Fletcher R, Leyffer S (1994) Solving mixed integer nonlinear programs by outer approximation. Mathematical Programming 66(1-3):327–349

    Article  MathSciNet  MATH  Google Scholar 

  • Floudas CA (1995) Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications (Topics in Chemical Engineering). Oxford University Press, New York

    Google Scholar 

  • Floudas CA, Gounaris CE (2009) A review of recent advances in global optimization. J Global Opt 45(1):3–38

    Article  MathSciNet  Google Scholar 

  • Floudas CA, Pardalos PM (2009) Encyclopedia of optimization, 2nd. Springer

  • Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114. doi:10.1002/nme.4270

    Article  MATH  Google Scholar 

  • Geoffrion AM (1972) Generalized benders decomposition. J Opt Theory Appl 10(4):237–260

    Article  MathSciNet  MATH  Google Scholar 

  • Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence design of composite materials Part I: Constant stiffness design. Composit Struct 90(1):1–11

    Article  Google Scholar 

  • Ghiasi H, Kazem F, Pasini D, Lessard L (2010) Optimum stacking sequence design of composite materials Part II: Variable stiffness design. Composit Struct 93(1):1–13

    Article  Google Scholar 

  • Gill PE, Murray W, Saunders MA (2005) SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Review 47(1):99–131

    Article  MathSciNet  MATH  Google Scholar 

  • Grenestedt JL, Gudmundson P (1993) Layup optimisation of composite material structures. In: Proceedings of the IUTAM Symposium on Optimal Design with Advanced Materials. Amsterdam, The Netherlands, pp 311–336

  • Grossmann IE (2002) Review of nonlinear mixed-integer and disjunctive programming techniques. Opt Eng 3(3):227–252

    Article  MathSciNet  MATH  Google Scholar 

  • Hansel W, Treptow A, Becker W, Freisleben B (2002) A heuristic and a genetic topology optimization algorithm for weight-minimal laminate structures. Composit Struct 58(2):287–294

    Article  Google Scholar 

  • Weaver P, Friswell M (2008) Optimization of anisotropic composite panels with T-shaped stiffeners including transverse shear effects and out-of-plane loading. Struct Multi Opti 37(2):165–184

    Article  Google Scholar 

  • Hvejsel CF (2011) Multi-Material Design Optimization of Composite Structures. Ph.D. thesis, Department of Mechanical and Manufacturing Engineering, Aalborg University, Denmark, special report no. 73

  • Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multi Opt 43(6):811–825

    Article  Google Scholar 

  • Hvejsel CF, Lund E, Stolpe M (2011) Optimization strategies for discrete multi-material stiffness optimization. Struct Multi Opt 44(2):149–163

    Article  Google Scholar 

  • IBM ILOG (2011) IBM ILOG CPLEX Optimization Studio V12.4. http://www.ibm.com

  • Kennedy GJ, Martins JRRA (2013) A laminate parametrization technique for discrete ply-angle problems with manufacturing constraints. Structural and Multidisciplinary Optimization doi:10.1007/s00158-013-0906-9

  • Le Riche R, Haftka RT (1995) Improved genetic algorithm for minimum thickness composite laminate design. Composit Eng 5(2):143–161

    Article  Google Scholar 

  • Le Riche R, Haftka RT (2012) On global optimization articles in SMO. Struct Multi Opt 46(5):627–629

    Article  Google Scholar 

  • Leyffer S (2001) Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Comput Opt Appl 18(3):295–309

    Article  MathSciNet  MATH  Google Scholar 

  • Leyffer S, Linderoth J, Luedtke J, Miller A, Munson T (2009) Applications and algorithms for mixed integer nonlinear programming. J Phys: Conf Series 180(1):012–014

    Google Scholar 

  • Liu BT, Haftka RA, Akgün M, Todoroki A (2000) Permutation genetic algorithm for stacking sequence design of composite laminates. Comput Methods Appl Mech Eng 186(2):357–372

    Article  MATH  Google Scholar 

  • Liu D, Toropov V, Querin O, Barton D (2011) Bilevel optimization of blended composite wing panels. J Aircr 48(1):107–118

    Article  Google Scholar 

  • Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124

    Article  Google Scholar 

  • Magnanti TL, Wong RT (1981) Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria. Oper Res 29(3):464–484

  • Muñoz E, Stolpe M (2011) Generalized Benders’ Decomposition for topology optimization problems. J Global Opt 51(1):149–183

    Article  MATH  Google Scholar 

  • Muñoz E (2010) Global Optimization for Structural Design by Generalized Benders? Decomposition. Ph.D. thesis, Department of Mathematics, Technical University of Denmark

  • Panda S, Natarajan R (1981) Analysis of laminated composite shell structures by finite element method. Comput Struct 14(3-4):225–230

    Article  Google Scholar 

  • Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multi Opt 43(5):589–596

    Article  MathSciNet  MATH  Google Scholar 

  • Sørensen SN, Lund E (2013) Topology and thickness optimization of laminated composites including manufacturing constraints. Structural and Multidiciplinary Optimization doi:10.1007/s00158-013-0904-y

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027

    Article  MATH  Google Scholar 

  • Stegmann J, Stolpe M (2006) Discrete material optimization of laminated composites - SIMP vs. global optimization. In: III European Conference on Computational Mechanics, Springer, pp 732–732

  • Still C, Westerlund T (2006) Solving convex minlp optimization problems using a sequential cutting plane algorithm. Comput Opt Appl 34(1):63–83

    Article  MathSciNet  MATH  Google Scholar 

  • Stolpe M, Stegmann J (2008) A Newton method for solving continuous multiple material minimum compliance problems. Struct Multi Opt 35(2):93–106

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1994) On the convexity and concavity of compliances. Struct Opt 7(1–2):42–46

    Article  Google Scholar 

  • Toropov VV, Jones R, Willment T, Funnell M (2005) Weight and Manufacturability Optimization of Composite Aircraft Components Based on a Genetic Algorithm. In: Proceedings of 6thWorld Congress of Structural and Multidisciplinary Optimization (WCSMO), Rio de Janeiro, Brazil

  • Tsai SW, Pagano NJ (1968) Invariant properties of composite materials. In: SW Tsai et al (ed) Composite Materials Workshop, Technomic Publishing Co., Stamfort, Connecticut, Progress in Material Science, vol 1, pp 233–253

  • Westerlund T, Pettersson F (1995) An extended cutting plane method for solving convex MINLP problems. Comput Chem Eng 19:131–136

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Danish Centre for Composite Structures and Materials for Wind Turbines (DCCSM), grant no. 09-067212 from the Danish Strategic Research Council. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren N. Sørensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sørensen, S.N., Stolpe, M. Global blending optimization of laminated composites with discrete material candidate selection and thickness variation. Struct Multidisc Optim 52, 137–155 (2015). https://doi.org/10.1007/s00158-015-1225-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1225-0

Keywords

Navigation