Skip to main content
Log in

Optimization strategies for discrete multi-material stiffness optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Design of composite laminated lay-ups are formulated as discrete multi-material selection problems. The design problem can be modeled as a non-convex mixed-integer optimization problem. Such problems are in general only solvable to global optimality for small to moderate sized problems. To attack larger problem instances we formulate convex and non-convex continuous relaxations which can be solved using gradient based optimization algorithms. The convex relaxation yields a lower bound on the attainable performance. The optimal solution to the convex relaxation is used as a starting guess in a continuation approach where the convex relaxation is changed to a non-convex relaxation by introduction of a quadratic penalty constraint whereby intermediate-valued designs are prevented. The minimum compliance, mass constrained multiple load case problem is formulated and solved for a number of examples which numerically confirm the sought properties of the new scheme in terms of convergence to a discrete solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Carbon fiber reinforced polymer.

  2. Glass fiber reinforced polymer.

References

  • Abrate S (1994) Optimal design of laminated plates and shells. Compos Struct 29(3):269–286

    Article  Google Scholar 

  • Ahmad S, Irons B, Zienkiewicz O (1970) Analysis of thick and thin shell structures by curved elements. Int J Numer Methods Eng 2:419–451

    Article  Google Scholar 

  • Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202

    Google Scholar 

  • Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  • Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, New York

    Google Scholar 

  • Bendsøe M, Díaz A, Lipton R, Taylor J (1995) Optimal design of material properties and material distribution for multiple loading conditions. Int J Numer Methods Eng 38(7):1149–1170

    Article  Google Scholar 

  • Bodnár G (2009) Visualization and interpretation tools for free material optimization results. In: 8th world congress on structural and multidisciplinary optimization. Lisbon, Portugal

  • Borrvall T, Petersson J (2001a) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190(46–47):6201–6229

    Article  MathSciNet  MATH  Google Scholar 

  • Borrvall T, Petersson J (2001b) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37–38):4911–4928

    Article  MathSciNet  MATH  Google Scholar 

  • Bruyneel M, Duysinx P (2006) Note on singular optima in laminate design problems. Struct Multidisc Optim 31(2):156–159

    Article  Google Scholar 

  • Cherkaev A (1994) Relaxation of problemss of optimal structural design. Int J Solids Struct 31(16):2251–2280

    Article  MathSciNet  MATH  Google Scholar 

  • Duysinx P, Bendsøe M (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478

    Article  MATH  Google Scholar 

  • Fukunaga H, Vanderplaats G (1991) Strength optimization of laminated composites with respect to layer thickness and/or layer orientation angle. Comput Struct 40(6):1429–1439

    Article  Google Scholar 

  • Gibiansky L, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498

    Article  MathSciNet  MATH  Google Scholar 

  • Gill P, Murray W, Saunders M (2005) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131

    Article  MathSciNet  MATH  Google Scholar 

  • Gill P, Murray W, Saunders M (2008) User’s guide for SNOPT version 7: software for large-scale nonlinear programming. Department of Mathematics University of California, San Diego, La Jolla, CA, pp 92093–920112

  • Gürdal Z, Haftka R, Hajela P (1999) Design and optimization of laminated composite materials. Wiley-Interscience, New York

    Google Scholar 

  • Hörnlein H, Kočvara M, Werner R (2001) Material optimization: bridging the gap between conceptual and preliminary design. Aerosp Sci Technol 5(8):541–554

    Article  MATH  Google Scholar 

  • Kohn R, Strang G (1982) Structural design optimization, homogenization and relaxation of variational problems. In: Macroscopic properties of disordered media, pp 131–147

  • Kohn R, Strang G (1986) Optimal design and relaxation of variational problems. Commun Pure Appl Math 39:1–25 (Part I), 139–182 (Part II), 353–357 (Part III)

    Google Scholar 

  • Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91(2): 158–167

    Article  Google Scholar 

  • Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124

    Article  Google Scholar 

  • Lurie K (1980) Optimal design of elastic bodies and the problem of regularization. Wiss Z - Tech Hochsch Leipz 4:339–347

    MATH  Google Scholar 

  • Mateus H, Soares C, Soares C (1991) Sensitivity analysis and optimal design of thin laminated composite structures. Comput Struct 41(3):501–508

    Article  MATH  Google Scholar 

  • Panda S, Natarajan R (1981) Analysis of laminated composite shell structures by finite element method. Comput Struct 14(3–4):225–230

    Article  MATH  Google Scholar 

  • Pedersen P (1989) On optimal orientation of orthotropic materials. Struct Multidisc Optim 1(2):101–106

    Google Scholar 

  • Pedersen P (1991) On thickness and orientational design with orthotropic materials. Struct Multidisc Optim 3(2):69–78

    Google Scholar 

  • Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3): 250–252

    Google Scholar 

  • Schmit JL, Farshi B (1973) Optimum laminate design for strength and stiffness. Int J Numer Methods Eng 7:519–536

    Article  Google Scholar 

  • Setoodeh S, Gürdal Z, Abdalla M, Watson L (2004) Design of variable stiffness composite laminates for maximum bending stiffness. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027

    Article  MATH  Google Scholar 

  • Stolpe M, Stegmann J (2008) A Newton method for solving continuous multiple material minimum compliance problems. Struct Multidisc Optim 35(2):93–106

    Article  MathSciNet  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22(2):116–124

    Article  Google Scholar 

  • Sun G, Hansen J (1988) Optimal design of laminated-composite circular-cylindrical shells subjected to combined loads. J Appl Mech 55:136

    Article  MATH  Google Scholar 

  • Svanberg K (1994) On the convexity and concavity of compliances. Struct Multidisc Optim 7(1):42–46

    MathSciNet  Google Scholar 

  • Thomsen J, Olhoff N (1990) Optimization of fiber orientation and concentration in composites. Control Cybern 19:327–341

    Google Scholar 

  • Zenkert D (1997) The handbook of sandwich construction. Engineering Materials Advisory Services Ltd

Download references

Acknowledgements

The authors wish to thank José Pedro Albergaria Amaral Blasques and Eduardo Muñoz, Technical University of Denmark, for fruitful discussions and ideas for challenging benchmark examples. This research is part of the “Multi-material design optimization of composite structures”-project sponsored by the Danish Research Council for Technology and Production Sciences (FTP), Grant no. 274-06-0443, this support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Frier Hvejsel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hvejsel, C.F., Lund, E. & Stolpe, M. Optimization strategies for discrete multi-material stiffness optimization. Struct Multidisc Optim 44, 149–163 (2011). https://doi.org/10.1007/s00158-011-0648-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0648-5

Keywords

Navigation