Skip to main content
Log in

Structural optimization using graphic statics

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a method for structural optimization of discrete trusses using Graphic Statics. As opposed to traditional structural optimization techniques, which are typically conducted by manipulating the geometry of the structure (the form diagram), the approach presented in this paper establishes a Graphic Statics solution to the problem, where structural optimization is conducted using design variables in the force domain (force diagram). The proposed approach presents several attractive features compared to traditional approaches. Since it is based on reciprocal graphical relationships between form geometry and forces, member stiffnesses need not be calculated. Additionally, by working on the force diagram, equilibrium of the solution is guaranteed, and no additional methods are required to enforce this condition; for example, there is no need to triangulate the structure or to add small area members. Furthermore, because only solutions that are in equilibrium are permitted, the number of design variables can be reduced. Also, subject to certain relationships, the location of the loads (or reactions) do not need to be set a priori. Through examples, it is shown that the proposed methodology can readily accommodate different tensile and compressive stresses for volume optimization problems and that, through the use of Graphic Statics, other restrictions or constraints on the member forces can easily be incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Altair Engineering Web Page (2013) www.altair.com

  • Achtziger W (1997) Topology optimization of discrete structures: an introduction in view of computational and nonsmooth aspects. In: Topology optimization in structural mechanics, pp 57–100

  • Achtziger W, Bendsoe MP, Ben-Tal A, Zowe J (1992) Equivalent displacement based formulations for maximum strength truss topology design. IMPACT Comput Sci Eng 4(4):315–345

    Article  MATH  MathSciNet  Google Scholar 

  • AISC (2010) ANSI/AISC 360-10 specification for structural steel buildings, pp 16.1-33

  • Baker WF, Beghini LL, Mazurek A, Carrion J, Beghini A (2013) Maxwell’s reciprocal diagrams and discrete Michell frames. Struct Multidisc Optim. doi:10.1007/s00158-013-0910-0

    MathSciNet  Google Scholar 

  • Beghini A, Beghini L, Carrion J, Mazurek A, Baker WF (2013) Rankine’s theorem for the design of cable structures. Struct Multidisc Optim. doi:10.1007/s00158-013-0945-2

    MathSciNet  Google Scholar 

  • Ben-Tal A, Bendsoe MP (1993) A new method for optimal truss topology design. SIAM J Optim 3(2):322–358

    Article  MATH  MathSciNet  Google Scholar 

  • Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  Google Scholar 

  • Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    Google Scholar 

  • Bendsoe MP, Sigmund O (2002) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Bow R (1873) Economics of construction in relation to framed structures. ICE Publishing, London

    Google Scholar 

  • Christensen P, Klarbring A (2008) An introduction to structural optimization. Springer, New York. ISBN 978-1402086656

    Google Scholar 

  • Cremona L (1872) Le figure reciproche nella grafica statica. Tipografia Giuseppe Bernardoni, Milano

    MATH  Google Scholar 

  • Dorn W, Gomory R, Greenberg M (1964) Automatic design of optimal structures. J Mech 3:25–52

    Google Scholar 

  • Fivet C, Zastavni D (2012) Robert Maillart’s key methods from the Salginatobel bridge design process (1928). J IASS 53(1):39–47

    Google Scholar 

  • Fleron P (1964) The minimum weight of trusses. Bygningsstatiske Meddelelser 35:81–96

    Google Scholar 

  • Hansen S, Vanderplaats G (1988) An approximation method for configuration optimization of trusses. AIAA J 28(1):161–168

    Article  Google Scholar 

  • Hemp WS (1973) Optimum structures. Clarendon Press, Oxford

    Google Scholar 

  • Hemp W (1974) Michell framework for uniform load between fixed supports. Eng Optim 1(1):61–69

    Article  Google Scholar 

  • Krog L, Tucker A, Kemp M, Boyd R (2004) Topology optimization of aircraft wing box ribs. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, pp 2004–4481

  • Maxwell JC (1864) On reciprocal figures and diagrams of forces. Phil Mag 26:250–261

    Google Scholar 

  • Maxwell JC (1870) On reciprocal figures, frames, and diagrams of forces. Edinb Roy Soc Proc 7:160–208

    Google Scholar 

  • Mazurek A, Baker WF, Tort C (2011) Geometrical aspects of optimum truss like structures. Struct Multidisc Optim 43(2):231–242

    Article  Google Scholar 

  • McConnel RE (1974) Least weight frameworks for loads across a span. J Eng Mech Div 100(5):885–891

    Google Scholar 

  • Michell AGM (1904) The limits of economy of material in frame-structures. Phil Mag 8(47):589–597

    Article  MATH  Google Scholar 

  • Oberndorfer JM, Achtziger W, Hörnlein H (1996) Two approaches for truss topology optimization: a comparison for practical use. Struct Multidisc Optim 11(3):137–144

    Article  Google Scholar 

  • Pichugin AV, Tyas A, Gilbert M (2012) On the optimality of Hemps arch with vertical hangers. Struct Multidiscipl Optim 46(1):17–25. doi:10.1007/s00158-012-0769-5

    Article  MATH  MathSciNet  Google Scholar 

  • Prager W (1970) Optimization of structural design. J Optim Theory Appl 6(I):1–21

    MATH  MathSciNet  Google Scholar 

  • Prager W (1978) Optimal layout of trusses with finite numbers of joints. J Mech Phys Solids 26:241–250

    Article  Google Scholar 

  • Rahami H, Kaveh A, Gholipour Y (2008) Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Eng Struct 30(9):2360–2369

    Article  Google Scholar 

  • Rozvany GIN (1976) Optimal design of flexural systems. Pergamon Press, Oxford

    Google Scholar 

  • Rozvany GIN (1989) Structural design via optimality criteria. Kluwer Academic Publishers Group, Dordrecht

    Book  MATH  Google Scholar 

  • Rozvany GIN (1996) Some shortcomings in Michell’s truss theory. Struct Multidisc Optim 12(4):244–250

    Article  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3):250–252

    Article  Google Scholar 

  • Rozvany GIN, Bendsoe MP, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev 48(2):41–119

    Article  Google Scholar 

  • Sigmund O (2000) Topology optimization: a tool for the tailoring of structures and materials. Philos T Roy Soc A 358(1765):211–227

    Article  MATH  MathSciNet  Google Scholar 

  • Sokol T (2010) A 99 line code for discretized Michell truss optimization written in Mathematica. Struct Multidisc Optim 43(2):181–190

    Article  MathSciNet  Google Scholar 

  • Stromberg LL, Beghini A, Baker WF, Paulino GH (2012) Topology optimization for braced frames: combining continuum and beam/column elements. Eng Struct 37:106–124

    Article  Google Scholar 

  • Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci USA 107(30):13,222–13,227

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (2013) Personal webpage of Krister Svanberg, Professor. http://www.math.kth.se/krille/

  • Talischi C, Paulino GH, Pereira A, Menezes IFM (2012a) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidisc Optim 45(3):309–328

    Article  MATH  MathSciNet  Google Scholar 

  • Talischi C, Paulino GH, Pereira A, Menezes IFM (2012b) PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidisc Optim 45(3):329–357

    Article  MATH  MathSciNet  Google Scholar 

  • Wolfe W (1921) Graphical analysis. McGraw-Hill Book Co. Inc., New York

    MATH  Google Scholar 

  • Zalewski W, Allen E (1998) Shaping structures: statics. Wiley, New York

    Google Scholar 

  • Zastavni D (2008) The structural design of Maillart’s Chiasso Shed (1924): a graphic procedure. Struct Eng Int J Int Assoc Bridge Struct Eng 18(3):247–252

    Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

  • Zhou M, Rozvany GIN (1993) DCOC: an optimality criteria method for large systems Part II: algorithm. Struct Multidisc Optim 6(4):250–262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beghini, L.L., Carrion, J., Beghini, A. et al. Structural optimization using graphic statics. Struct Multidisc Optim 49, 351–366 (2014). https://doi.org/10.1007/s00158-013-1002-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-1002-x

Keywords

Navigation