Skip to main content
Log in

A Linear Approach for Sizing Optimization of Isostatic Trussed Structures Subjected to External and Self-Weight Loads

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

The implementation of a new linear method to optimum weight design of trussed structures subjected to external and self-weight loads is proposed. Design variables are the cross-section areas of the members. Inequality constraints are written based on the force-method for isostatic structures considering maximum and minimum axial stress criteria. The novelty of the proposed approach is the benefit created from the combination of a linear inequality-constrained formulation with interior-point methods to tunnel the solution rapidly and monotonically towards the minimum value through feasible space, also eliminating the need to directly explore the finite-element model. To evaluate the performance of the algorithm, trusses are subject to optimization processes based on different techniques: (i) the proposed method, called by “indirect-method”; (ii) a design problem with constraint evaluated directly from the finite-element model; (iii) optimization based on Genetic Algorithms. The three methods are compared using trusses with 10, 37 and 1240 bar-elements. The results showed that the indirect-method was able to provide great performance for complex topologies, returning weight designs up to 70 times lighter in 1% of the time required by a Genetic Algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Al Rabadi, H. F. H. (2014). Truss size and topology optimization using harmony search method. The University of Iowa.

  • Asl, R. N., Aslani, M., & Panahi, M. S. (2013) Sizing optimization of truss structures using a hybridized genetic algorithm. arXiv preprint arXiv:1306.1454

  • Assimi, H., Jamali, A., & Nariman-zadeh, N. (2017). Sizing and topology optimization of truss structures using genetic programming. Swarm and Evolutionary Computation, 37, 90.

    Article  Google Scholar 

  • Banh, T. T., & Lee, D. (2018). Multi-material topology optimization design for continuum structures with crack patterns. Composite Structures, 186, 193.

    Article  Google Scholar 

  • Bendsøe, M. P., Ben-Tal, A., & Zowe, J. (1994). Optimization methods for truss geometry and topology design. Structural Optimization, 7(3), 141.

    Article  Google Scholar 

  • Bölte, A., & Thonemann, U. W. (1996). Optimizing simulated annealing schedules with genetic programming. European Journal of Operational Research, 92(2), 402.

    Article  MATH  Google Scholar 

  • Camp, C., & Farshchin, M. (2014). Design of space trusses using modified teaching–learning based optimization. Engineering Structures, 62, 87.

    Article  Google Scholar 

  • Cazacu, R., & Grama, L. (2014). Steel truss optimization using genetic algorithms and FEA. Procedia Technology, 12, 339.

    Article  Google Scholar 

  • Chambers, L. (1995). The practical handbook of genetic algorithms: New frontiers. v. 2. CRC Press. https://books.google.com.br/books?id=9RCE3pgj9K4C

  • de Almeida, F. S. (2016). Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm. Composite Structures, 143, 287.

    Article  Google Scholar 

  • Doan, Q. H., & Lee, D. (2018). Optimal formation assessment of multi-layered ground retrofit with arch-grid units considering buckling load factor. International Journal of Steel Structures. https://doi.org/10.1007/s13296-018-0115-x

    Google Scholar 

  • Dominguez, A., Stiharu, I., & Sedaghati, R. (2006). Practical design optimization of truss structures using the genetic algorithms. Research in Engineering Design, 17(2), 73.

    Article  Google Scholar 

  • Farshchin, M., Camp, C., & Maniat, M. (2016). Multi-class teaching–learning-based optimization for truss design with frequency constraints. Engineering Structures, 106, 355.

    Article  Google Scholar 

  • Farshi, B., & Alinia-Ziazi, A. (2010). Sizing optimization of truss structures by method of centers and force formulation. International Journal of Solids and Structures, 47(18–19), 2508.

    Article  MATH  Google Scholar 

  • Ferrier, G. D., & Lovell, C. K. (1990). Measuring cost efficiency in banking: Econometric and linear programming evidence. Journal of Econometrics, 46(1–2), 229.

    Article  Google Scholar 

  • Frans, R., & Arfiadi, Y. (2014). Sizing, shape, and topology optimizations of roof trusses using hybrid genetic algorithms. Procedia Engineering, 95, 185.

    Article  Google Scholar 

  • Gan, B. S., Hara, T., Han, A., Alisjahbana, S. W., & Asad, S. (2017). Evolutionary ACO algorithms for truss optimization problems. Procedia Engineering, 171, 1100.

    Article  Google Scholar 

  • Gomes, H. M. (2011). Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Systems with Applications, 38(1), 957.

    Article  Google Scholar 

  • Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM Journal on Computing, 2(2), 88.

    Article  MathSciNet  MATH  Google Scholar 

  • Hultman, M. (2010). Weight optimization of steel trusses by a genetic algorithm-size, shape and topology optimization according to Eurocode. TVBK-5176

  • Kaveh, A., & Khayatazad, M. (2013). Ray optimization for size and shape optimization of truss structures. Computers & Structures, 117, 82.

    Article  Google Scholar 

  • Kaveh, A., & Rahami, H. (2006). Analysis, design and optimization of structures using force method and genetic algorithm. International Journal for Numerical Methods in Engineering, 65(10), 1570.

    Article  MATH  Google Scholar 

  • Koski, J. (1981). Multicriterion optimization in structural design. Technical report. Tampere University of Technology, Finland.

  • Kripka, M. (2004). Discrete optimization of trusses by simulated annealing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2), 170.

    Article  Google Scholar 

  • Lamberti, L., & Pappalettere, C. (2003). Move limits definition in structural optimization with sequential linear programming. Part II: Numerical examples. Computers & Structures, 81(4), 215.

    Article  MathSciNet  Google Scholar 

  • Lustig, I. J., Marsten, R. E., & Shanno, D. F. (1994). Interior point methods for linear programming: Computational state of the art. ORSA Journal on Computing, 6(1), 1.

    Article  MathSciNet  MATH  Google Scholar 

  • Lyamin, A. V., & Sloan, S. (2002). Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 26(2), 181.

    Article  MATH  Google Scholar 

  • Miguel, L. F. F., & Miguel, L. F. F. (2012). Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Systems with Applications, 39(10), 9458.

    Article  Google Scholar 

  • Mohr, D. P., Stein, I., Matzies, T., & Knapek, C. A. (2011). Robust topology optimization of Truss with regard to volume. arXiv preprint arXiv:1109.3782

  • Mortazavi, A., & Toğan, V. (2017). Sizing and layout design of truss structures under dynamic and static constraints with an integrated particle swarm optimization algorithm. Applied Soft Computing, 51, 239.

    Article  Google Scholar 

  • Potra, F. A., & Wright, S. J. (2000). Interior-point methods. Journal of Computational and Applied Mathematics, 124(1–2), 281.

    Article  MathSciNet  MATH  Google Scholar 

  • Rajan, S. (1995). Sizing, shape, and topology design optimization of trusses using genetic algorithm. Journal of Structural Engineering, 121(10), 1480.

    Article  Google Scholar 

  • Ringertz, U. T. (1985). On topology optimization of trusses. Engineering optimization, 9(3), 209.

    Article  Google Scholar 

  • Sivanandam, S., & Deepa, S. (2008). Introduction to genetic algorithms (pp. 165–209). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Stolpe, M. (2016). Truss optimization with discrete design variables: A critical review. Structural and Multidisciplinary Optimization, 53(2), 349.

    Article  MathSciNet  Google Scholar 

  • Tejani, G. G., Savsani, V. J., Patel, V. K., & Savsani, P. V. (2017). Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics. Journal of Computational Design and Engineering, 5, 198–214.

    Article  Google Scholar 

  • Wang, D., Zhang, W., & Jiang, J. (2002). Truss shape optimization with multiple displacement constraints. Computer Methods in Applied Mechanics and Engineering, 191(33), 3597.

    Article  MATH  Google Scholar 

  • Wang, D., Zhang, W., & Jiang, J. (2004). Truss optimization on shape and sizing with frequency constraints. AIAA Journal, 42(3), 622.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Avila Correia Martins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, F.A.C., Avila, J.P.J. & Silva, M.A.d. A Linear Approach for Sizing Optimization of Isostatic Trussed Structures Subjected to External and Self-Weight Loads. Int J Steel Struct 19, 1146–1157 (2019). https://doi.org/10.1007/s13296-018-0194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0194-8

Keywords

Navigation