Skip to main content

Advertisement

Log in

Topology optimization using a topology description function

  • Research paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The topology description function (TDF) approach is a method for describing geometries in a discrete fashion, i.e. without intermediate densities. Hence, the TDF approach may be used to carry out topology optimization, i.e. to solve the material distribution problem. However, the material distribution problem may be ill-posed. This ill-posedness can be avoided by limiting the complexity of the design, which is accomplished automatically by limiting the number of design parameters used for the TDF. An important feature is that the TDF design description is entirely decoupled from a finite element (FE) model. The basic idea of the TDF approach is as follows. In the TDF approach, the design variables are parameters that determine a function on the so-called reference domain. Using a cut-off level, this function unambiguously determines a geometry. Then, the performance of this geometry is determined by a FE analysis. Several optimization techniques are applied to the TDF approach to carry out topology optimization. First, a genetic algorithm is applied, with (too) large computational costs. The TDF approach is shown to work using a heuristic iterative adaptation of the design parameters. For more effective and sound optimization methods, design sensitivities are required. The first results on design sensitivity analysis are presented, and their accuracy is studied. Numerical examples are provided for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.; Kohn, R.V. 1993: Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A/Solids 12(6), 839–878

    Google Scholar 

  2. Barthelemy, B.; Chon, C.T.; Haftka, R.T. 1988: Accuracy problems associated with semi-analytical derivatives of static response. Fin. Elem. Anal. Des. 4, 249–265

    Google Scholar 

  3. Barthelemy, B.; Haftka, R.T. 1988: Accuracy analysis of the semi-analytical method for shape sensitivity calculation. In: Proceedings of the 29th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization

  4. Beckers, M. 1999: Topology optimization using a dual method with discrete variables. Struct. Optim. 17(1), 14–24

    Google Scholar 

  5. Bendsøe, M.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224

    Google Scholar 

  6. Bendsøe, M.P. 1989: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202

    Google Scholar 

  7. Bendsøe, M.P. 1999: Variable-topology optimization: status and challenges. In: Wunderlich, W. (ed.) Proceedings of the European Conference on Computational Mechanics 1999

  8. Bendsøe, M.P.; Sigmund, O. 1999: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69(9), 635–654

    Google Scholar 

  9. Céa, J.; Garreau, S.; Guillaume, P.; Masmoudi, M. 2000: The shape and topological optimizations connection. Comput. Methods Appl. Mech. Eng. 188(4), 713–726

    Google Scholar 

  10. Cheng, G.; Olhoff, N. 1981: An investigation concerning optimal design of solid elastic plates. Int. J. Solid Struct. 17(3), 305–323

    Google Scholar 

  11. De Boer, H.; Van Keulen, F. 2000: Refined semi-analytical design sensitivities. Int. J. Solid Struct. 37(46–47), 6961–6980

    Google Scholar 

  12. De Ruiter, M. J.; Van Keulen, F. 2000: Topology optimization: approaching the material distribution problem using a topological function description. In: Topping, B.H.V. (ed.) Computational Techniques for Materials, Composites and Composite Structures, pp. 111–119. Edinburgh: Civil-Comp Press

  13. Edelsbrunner, H. 1999: Deformable smooth surface design. Disc. Comput. Geom. 21(1), 87–115

    Google Scholar 

  14. Eschenauer, H.A.; Olhoff, N. 2001: Topology optimization of continuum structures: a review. Appl. Mech. Rev. 54(4), 331–390

    Google Scholar 

  15. Eschenauer, H.A.; Kobelev, V.V.; Schumacher, A. 1994: Bubble method for topology and shape optimization of structures. Struct. Optim. 8, 42–51

    Google Scholar 

  16. Garreau, S.; Guillaume, P.; Masmoudi, M. 2001: The topological asymptotic for pde systems: the elasticity case. SIAM J. Control Optim. 39(6), 1756–1778

    Google Scholar 

  17. Gea, H.C. 1996: Topology optimization: a new microstructure-based design domain method. Comput. Struct. 61(5), 781–788

    Google Scholar 

  18. Haber, R.B.; Bendsøe, M.P. 1998: Problem formulation, solution procedures and geometric modeling: key issues in variable-topology optimization. In: 7th AIAA/USAF/NASA/ ISSMO Symposium on Multidisciplinary Analysis and Optimization, pp. 1864–1873

  19. Haftka, R.T.; Adelman, H.M. 1989: Recent developments in structural sensitivity analysis. Struct. Optim. 1, 137–151

    Google Scholar 

  20. Kohn, R.V.; Strang, G. 1986: Optimal design and relaxation of variational problems. Commun. Pure Appl. Math. 39, 1–25 (Part I), 139–182 (Part II) and 353–377 (Part III)

  21. Mlejnek, H.P.; Schirrmacher, R. 1993: An engineer’s approach to optimal material distribution and shape finding. Comput. Methods Appl. Mech. Eng. 106(1), 1–26

    Google Scholar 

  22. Osher, S.; Sethian, J.A. 1988: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(12), 12–49

    Google Scholar 

  23. Petersson, J. 1999: Some convergence results in perimeter controlled topology optimization. Comput. Methods Appl. Mech. Eng. 171(1–2), 123–140

    Google Scholar 

  24. Rozvany, G.I.N.; Zhou, M.; Sigmund, O. 1994: Topology optimization in structural design. In: Adeli, H. (ed.) Advances in Design Optimization, pp. 340–399. London: Chapman and Hall

  25. Sethian, J.A.; Wiegmann, A. 2000: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528

    Google Scholar 

  26. Sokolowski, J.; Zochowski, A. 1999: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272

    Google Scholar 

  27. Zhou, M.; Rozvany, G.I.N. 1991: The coc algorithm part ii: topological geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.J. de Ruiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Ruiter, M., van Keulen , F. Topology optimization using a topology description function. Struct Multidisc Optim 26, 406–416 (2004). https://doi.org/10.1007/s00158-003-0375-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-003-0375-7

Keywords

Navigation