Skip to main content
Log in

Shape optimisation of preform design for precision close-die forging

  • Industrial Application
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Preform design is an essential stage in forging especially for parts with complex shapes. In this paper, based on the evolutionary structural optimisation (ESO) concept, a topological optimisation method is developed for preform design. In this method, a new criterion for element elimination and addition on the workpiece boundary surfaces is proposed to optimise material distribution. To improve the quality of the boundary after element elimination, a boundary smoothing technique is developed using B-spline curve approximation. The developed methods are programmed using C# code and integrated with DEFORM 2D software package. Two 2D case problems including forging of an aerofoil shape and forging of rail wheel are evaluated using the developed method. The results suggest that the developed topology optimisation method is an efficient approach for preform design optimisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Altan T, Oh SI, Gegel HL (1983) Metal forming: fundamentals and applications (ASM Series in Metal Processing). ASM, Metals Park

    Google Scholar 

  • Anna N, Frida B (2007) Topology optimization of a stamping die. AIP Conf Proc 908(1):449–454

    Google Scholar 

  • Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  • Deng Y, Chen H, Ma M, Zhang Y (2005) Studies of aircraft frame design based on topology optimization. Struct Environ Eng 32(2):39–45

    Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(3):331–390

    Article  Google Scholar 

  • Gao T, Yang H, Liu Y-l (2006) Backward tracing simulation of precision forging process for blade based on 3D FEM. Trans Nonferr Met Soc China 16(Supplement 2):s639–s644

    Article  Google Scholar 

  • Hinton E, Sienz J (1995) Fully stressed topological design of structures using an evolutionary procedure. Eng Comput 12(3):229–244

    Article  MATH  Google Scholar 

  • Huang X, Xie ZM (2008) Topology optimization of nonlinear structures under displacement loading. Eng Struct 30(6):2057–2068

    Article  Google Scholar 

  • Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88:357–364

    Article  Google Scholar 

  • Kang BS, Kim N, Kobayashi S (1990) Computer-aided preform design in forging of an airfoil section blade. Int J Mach Tools Manuf 30:43–52

    Article  Google Scholar 

  • Kim N, Kobayashi S (1990) Preform design in H-shaped cross sectional axisymmetric forging by the finite element method. Int J Mach Tools Manuf 30(2):243–268

    Article  Google Scholar 

  • Kobayashi S, Oh SI, Altan T (1989) Metal forming and the finite-element method. Oxford University Press, New York

    Google Scholar 

  • Lee SR, Lee YK, Park CH, Yang DY (2002) A new method of preform design in hot forging by using electric field theory. Int J Mech Sci 44:773–792

    Article  MATH  Google Scholar 

  • Naceur H, Guo YQ, Batoz JL (2004) Blank optimization in sheet metal forming using an evolutionary algorithm. J Mater Process Technol 151:183–191

    Article  Google Scholar 

  • Ou H, Balendra R (1998) Preform design for forging of aerofoil sections using FE simulation. J Mater Process Technol 80–81:144–148

    Article  Google Scholar 

  • Park JJ, Rebelo N, Kobayashi S (1983) A new approach to preform design in metal forming with the finite element method. Int J Mach Tool Des Res 23(1):71–79

    Article  Google Scholar 

  • Piegl L, Tiller W (1997) The NURBS book. Springer, New York

    Book  Google Scholar 

  • Querin O, Steven, G, Xie Y (1998) Evolutionary structural optimization (ESO) using a bidirectional algorithm. Eng Comput 15(7):1031–1048

    MATH  Google Scholar 

  • Roy S, Ghosh S, Shivpuri R (1997) A new approach to optimal design of multi-stage metal forming processes with micro genetic algorithms. Int J Mach Tools Manuf 37(1):29–44

    Article  Google Scholar 

  • Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidisc Optim 37:217–237

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3–4):250–252

    Google Scholar 

  • SFTC (2007) DEFORM 2D version 8.1 user’s manual. www.deform.com. Ohio, Scientific Forming Technologies Corporation

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization method. Comput Methods Appl Mech Eng 93:291–318

    Article  MATH  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(4):885–896

    Article  Google Scholar 

  • Xu Z, Lin Z, Wang H (2006) Lightweight design of auto-body structure by topology optimisation based on level set method. IET Conference Publications 2006(CP524):1818–1823

    Google Scholar 

  • Yang YH, Liu D, He ZY, Luo ZJ (2009) Multi-objective preform optimization using RSM. Rare Metal Mater Eng 38(5):1019–1024

    Google Scholar 

  • Zhao G, Wright ED, Grandhi RV (1997) Sensitivity analysis based preform die shape design for net-shape forging. Int J Mach Tools Manuf 37(8):1251–1271

    Article  Google Scholar 

  • Zhao G, Zhao Z, Wang T, Grandhi RV (1998) Preform design of a generic turbine disk forging process. J Mater Process Technol 84:193–201

    Article  Google Scholar 

  • Zhao X, Zhao G, Wang G, Wang T (2002) Preform die shape design for uniformity of deformation in forging based on preform sensitivity analysis. J Mater Process Technol 128(1–3):25–32

    Article  Google Scholar 

  • Zhou M, Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidisc Optim 21:80–83

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by the National Nature Science Foundation of China 51005150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, B., Ou, H. & Cui, Z.S. Shape optimisation of preform design for precision close-die forging. Struct Multidisc Optim 44, 785–796 (2011). https://doi.org/10.1007/s00158-011-0668-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0668-1

Keywords

Navigation