Skip to main content
Log in

Optimum design of long-span suspension bridges considering aeroelastic and kinematic constraints

  • INDUSTRIAL APPLICATION
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Cable supported bridges are wind prone structures. Therefore, their aerodynamic behaviour must be studied in depth in order to guarantee their safe performance. In the last decades important achievements have been reached in the study of bridges under wind-induced actions. On the other hand, non-conventional design techniques such as sensitivity analysis or optimum design have not been applied although they have proved their feasibility in the automobile or aeronautic industries. The aim of this research work is to demonstrate how non-conventional design techniques can help designers when dealing with long span bridges considering their aeroelastic behaviour. In that respect, the comprehensive analytical optimum design problem formulation is presented. In the application example the optimum design of the challenging Messina Strait Bridge is carried out. The chosen initial design has been the year 2002 design proposal. Up to a 33% deck material saving has been obtained after finishing the optimization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora J (ed) (1997) Guide to structural optimization. Technical Commitee on Optimal Structural Design, ASCE, New York

    Google Scholar 

  • Burns SA (ed) (2002) Recent advances in optimal structural design. Technical Commitee on Optimal Structural Design, ASCE, Reston

    Google Scholar 

  • Cohn MZ, Lounis Z (1993) Optimum limit design of continuous prestressed concrete beams. J Struct Eng ASCE 119:3551–3576

    Article  Google Scholar 

  • Diana G, Falco M, Bruni S, Cigada A, Larose GL, Damsgaard A, Collina A (1995) Comparisons between wind tunnel tests on a full aeroelastic model of the proposed bridge over Stretto di Messina and numerical results. J Wind Eng Ind Aerodyn 54/55:101–113

    Article  Google Scholar 

  • Diana G, Falco M, Cheli F, Cigada A (2003) The aeroelastic study of the Messina Straits Bridge. Nat Hazards 30:79–106

    Article  Google Scholar 

  • Diana G, Resta F, Zasso A, Belloli M, Rocchi D (2004) Forced motion and free motion aeroelastic tests on a new concept dynamometric section model of the Messina suspension bridge. J Wind Eng Ind Aerodyn 92:441–462

    Article  Google Scholar 

  • Dowell EH, Clark R, Cox D, Curtiss HC, Edwards JW, Hall KC, Peters DA, Scanlan R, Simiu E, Sisto F, Strganac TW (2004) A moderm course in aeroelasticity. Kluwer, Dordrecht

    Google Scholar 

  • Gimsing NJ (1997) Cable supported bridges: concept and design. Wiley, Chichester

    Google Scholar 

  • Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to parallel computing. Pearson, Upper Saddle River

    Google Scholar 

  • Haftka RT (1973) Automated procedure for design of wing structures to satisfy strength and flutter requirements. NASA, Washington, D.C., TN D-7264

    Google Scholar 

  • Haftka RT (1975) Parametric constraints with application to optimization for flutter using a continuous flutter constraint. AIAA J 23(4):471–475

    Article  Google Scholar 

  • Haftka RT, Gürdal Z (1992) Elements of structural optimization. Third revised and expanded edition. Kluwer, Dordrecht

    Google Scholar 

  • Hart GC, Wong K (2000) Structural dynamics for structural engineers. Wiley, New York

    Google Scholar 

  • Hernández S (1989) Métodos de Diseño Óptimo de Estructuras. Colegio de Ingenieros de Caminos, Canales y Puertos

    Google Scholar 

  • Hernández S (2001) The rias altas link. A challeging crossing. In: Krokebas J (ed) Strait crossing. Balkema, The Netherlands, pp 407–414

    Google Scholar 

  • Hernández S, Jurado JA (1998) A review of the theories of aerodynamic forces in bridges. Fourth World Congress on Computational Mechanics, Buenos Aires, Argentina

    Google Scholar 

  • Hernández S, Jurado JÁ, Bravo F, Baldomir A (2005a) A comparison of flutter speed of the Messina Bridge considering several cable configurations. Fluid structure interaction and moving boundary problems. WIT, La Coruna

    Google Scholar 

  • Hernández S, Jurado JÁ, Nieto F (2005b) Aeroelastic analysis and sensitivity of the flutter speed of long span suspension bridges with distributed computing. Ninth international conference on computer aided optimum design in engineering, Skiathos, Greece, WIT Press

    Google Scholar 

  • Holmes JD (2001) Wind loading of structures. Spon, London

    Google Scholar 

  • Ito M (1998) 21st century super span bridges in Japan. In: Larsen A, Esdall S (eds) Bridge Aerodynamics. Balkema, The Netherlands, pp 145–152

    Google Scholar 

  • Jurado JA (2001) PhD Thesis: Análisis Aeroelástico y de Sensibilidad del Fenómeno de Flameo en Puentes Soportados por Cables, Universidade da Coruña

  • Jurado J, Hernández S (2004a) Análisis de Sensibilidad del Flameo de Puentes de Gran Vano en Casos de Frecuencias de Vibración Simultáneas. (In Spanish). Rev Int Métodos Numér Cálc Diseño Ing 20(3):261–276

    MATH  Google Scholar 

  • Jurado JÁ, Hernández S (2004b) Sensitivity analysis of bridge flutter with respect to mechanical parameters of the deck. Struct Multidisc Optim 27(4):272–283

    Article  Google Scholar 

  • Jurado JÁ, Hernández S, Mosquera A, Nieto F (2003) Optimal cable arangement in cable stayed bridges based in sensitivity analysis of aeroelastic behaviour. 2003 ASCE Structures Congress &Exposition, ASCE

  • Larsen A (1993) Aerodynamic aspects of the final design of the 1624 m suspension bridge across the great belt. J Wind Eng Ind Aerodyn 48:261–285

    Article  Google Scholar 

  • McGhee KK, Barton FW, McKeel WT (1991) Optimum design of composite bridge deck panels. Advanced composites materials in civil engineering structures. ASCE, Las Vegas

    Google Scholar 

  • MHPCC (2003) Introduction to parallel programming. MHPCC, Manoa

    Google Scholar 

  • Miyata T (2002) Significance of aero-elastic relationship in wind-resistant design of long-span bridges. J Wind Eng Ind Aerodyn 90:1479–1492

    Article  Google Scholar 

  • Miyata T, Yamada H, Katsuchi H (2003) Comparative analysis of Messina Bridge - international benchmark study. Eleventh international conference on wind engineering, Lubbock, Texas, USA

  • Mosquera A, Hernández S (2002) Linear and non linear sensitivity analysis of eigenvalue problems. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, Georgia, USA.

  • Mosquera A, Hernández S, Jurado JÁ (2003) Analytical sensitivity analysis of aeroelastic performance of suspension bridges under construction. 11th International conference on wind engineering, Lubbock, Texas, USA

  • Negrao JHO, Simoes LMC (2004) Reliability-based optimum design of cable-stayed bridges. Struct Multidisc Optim 28:214–220

    Article  Google Scholar 

  • Nelson RB (1976) Simplified calculation of eigenvector derivatives. AIAA J 14:1201–1205

    Article  MATH  MathSciNet  Google Scholar 

  • Nieto F (2006) PhD Thesis: Análisis de Sensibilidad y Optimización Aeroelástica de Puentes Colgantes en Entornos de Computación Distribuida. In Spanish. Construction Technology. La Corunna, University of La Corunna

  • Nieto F, Hernández S (2006) An augmented set of design variables for sensitivity analysis of flutter speed of cable supported bridges. 9o Convegno Nazionale di Ingegneria del Vento IN-VENTO 2006, Pescara, Associazione Nazionale per l’Ingegneria del Vento

  • Nieto F, Hernández S, Jurado JA (2005a) Distributed computing for the evaluation of the aeroelastic response and sensitivity analysis of flutter speed of the Messina Bridge. Fluid structure interaction and moving boundary problems. WIT, Coruña

    Google Scholar 

  • Nieto F, Jurado JÁ, Hernández S (2005b) Aplicación de la Programación Distribuida en la Obtención de la Velocidad de Flameo y los Análisis de Sensibilidad del Flameo en Puentes de Gran Vano. Rev Int Métodos Numér Cálc Diseño Ing 21(1):83–101

    Google Scholar 

  • Nieto F, Hernández S, Jurado JÁ (2006) Distributed computing of the aeroelastic analysis and sensitivities of flutter speed of bridges. Application to the Messina Bridge. Nono Convegno Nazionale di Ingegneria del Vento IN-VENTO 2006, Pescara, Italia, Associazione Nazionale per l’Ingegneria del Vento

  • Perezzan JC, Hernández S (2005) Analytical expressions of sensitivities for shape variables in second order bending systems. Adv Eng Softw 36:99–108

    Article  Google Scholar 

  • Przemieniecki JS (1968) Theory of matrix structural analysis. Dover, Mineola

    MATH  Google Scholar 

  • Ryall MJ, Parke GAR, Harding JE (2000) Manual of brige engineering. Telford, London

    Google Scholar 

  • Scanlan RH, Tomko JJ (1971) Aircraft and bridge deck flutter derivatives. J Eng Mech Div ASCE 97:1717–1737

    Google Scholar 

  • Scott R (2001) In the Wake of Tacoma: suspension bridges and the quest for aerodynamic stability. ASCE, Reston

    Google Scholar 

  • Simiu E, Scanlan RH (1996) Wind effects on structures: fundamentals and applications to design. Wiley, New York

    Google Scholar 

  • Troitsky MS (1994) Planning and design of bridges. Wiley, New York

    Google Scholar 

  • Vanderplaats GN (2001) Numerical optimization techniques for engineering design: with applications. Vanderplaats Research & Development inc., Colorado Springs

    Google Scholar 

  • Venkataraman S, Haftka RT (2004) Structural optimization complexity: what has Moore’s Law done for us? Struct Multidisc Optim 28:375–387

    Article  Google Scholar 

  • VMA_Engineering (1988) ADS—A fortran program for automated design synthesis. Version 3.00. VMA, Goleta

  • Wang J, Ko J, Ni Y (2000) Modal sensitivity analysis of tsing ma bridge for structural damage detection. Nondestructive Evaluation of Highways, Utilities and Pipelines IV, Proc SPIE, Newport Beach, March 7–9

  • Wilde DJ (1978) Globally optimal design. Wiley, New York

    Google Scholar 

  • Wilkinson B, Allen M (2005) Parallel programming. Techniques and applications using networked workstations and parallel computers. Pearson, Upper Saddle River

    Google Scholar 

  • Xanthakos PP (1994) Theory and design of bridges. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nieto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieto, F., Hernández, S. & Jurado, J.Á. Optimum design of long-span suspension bridges considering aeroelastic and kinematic constraints. Struct Multidisc Optim 39, 133–151 (2009). https://doi.org/10.1007/s00158-008-0314-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-008-0314-8

Keywords

Navigation