Skip to main content
Log in

On the validity of using small positive lower bounds on design variables in discrete topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

It is proved that an optimal {ε, 1}n solution to a “ε-perturbed” discrete minimum weight problem with constraints on compliance, von Mises stresses and strain energy densities, is optimal, after rounding to {0, 1}n, to the corresponding “unperturbed” discrete problem, provided that the constraints in the perturbed problem are carefully defined and ε > 0 is sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtziger W, Stolpe M (2007) Truss topology optimization with discrete design variables – guaranteed global optimality and benchmark examples. Struct Multidisc Optim 34(1):1–20

    Article  MathSciNet  Google Scholar 

  • Allaire G (2002) Shape optimization by the homogenization method. Springer, New York

    MATH  Google Scholar 

  • Allaire G, Jouve F, Maillot H (2004) Topology optimization for minimum stress design with the homogenization method. Struct Multidisc Optim 28(2):87–98

    Article  MathSciNet  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  • Cheng G, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Optim 13(4):258–266

    Article  Google Scholar 

  • Cheng G, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20(2):129–148

    Article  Google Scholar 

  • Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(2):1453–1478

    Article  MATH  Google Scholar 

  • Gill PE, Murray W, Saunders MA (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006

    Article  MATH  MathSciNet  Google Scholar 

  • Kirsch U (1990) On singular topologies in optimum structural design. Struct Multidisc Optim 2(3):133–142

    Google Scholar 

  • Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidisc Optim 26(1):50–66

    Article  MathSciNet  Google Scholar 

  • Petersson J (2001) On continuity of the design-to-state mappings for trusses with variable topology. Int J Eng Sci 39(10):1119–1141

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN, Birker T (1994) On singular topologies in exact layout optimization. Struct Multidisc Optim 8(4):228–235

    Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3):250–252

    Google Scholar 

  • Stolpe M (2003) On models and methods for global optimization of structural topology. Ph.D. thesis, Royal Institute of Technology (KTH)

  • Stolpe M, Achtziger W, Kawamoto A (2006) A concept for global optimization of topology design problems. In: Bendsøe MP, Olhoff N, Sigmund O (eds) IUTAM symposium on topology design optimization of structures, machines and materials. Springer, Berlin Heidelberg New York, pp 185–194

    Chapter  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K, Werme M (2005) A hierarchical neighbourhood search method for topology optimization. Struct Multidisc Optim 29(5):325–340

    Article  MathSciNet  Google Scholar 

  • Svanberg K, Werme M (2007) Sequential integer programming methods for stress constrained topology optimization. Struct Multidisc Optim 34:277–299

    Article  MathSciNet  Google Scholar 

  • Sved G, Ginos Z (1968) Structural optimization under multiple loading. Int J Mech Sci 10:803–805

    Article  Google Scholar 

  • Werme M (2006) Globally optimal benchmark solutions to some small-scale discretized continuum topology optimization problems. Struct Multidisc Optim 32(3):259–262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krister Svanberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svanberg, K., Werme, M. On the validity of using small positive lower bounds on design variables in discrete topology optimization. Struct Multidisc Optim 37, 325–334 (2009). https://doi.org/10.1007/s00158-008-0248-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-008-0248-1

Keywords

Navigation