Skip to main content
Log in

On arithmetic in the Cantor- Łukasiewicz fuzzy set theory

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Axiomatic set theory with full comprehension is known to be consistent in Łukasiewicz fuzzy predicate logic. But we cannot assume the existence of natural numbers satisfying a simple schema of induction; this extension is shown to be inconsistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cantini, A.: The undecidability of Grishin’s set theory. Studia Logica 74, 345–368 (2003)

    Article  Google Scholar 

  2. Chang, C.C.: The axiom of comprehension in infinite valued logic. Math. Scand 93, 9–30 (1963)

    Google Scholar 

  3. Fenstad, J.E.: On the consistency of the axiom of comprehensionin the Lukasiewicz infinite valued logic. Math. Scand 14, 65–74 (1964)

    Google Scholar 

  4. Gottwald, S.: Untersuchungen zur mehrwertigen Mengenlehre I. Math. Nachrichten 72, 297–303 (1976)

    Google Scholar 

  5. Gottwald, S.: Untersuchungen zur mehrwertigen Mengenlehre II. Math. Nachrichten 74, 329–336 (1976)

    Google Scholar 

  6. Gottwald, S.: Untersuchungen zur mehrwertigen Mengenlehre III. Math. Nachrichten 79, 207–217 (1977)

    Google Scholar 

  7. Grayson, R.J.: Heyting-valued models for intuitionistic set theory, Application of Sheaves. Lect. Notes Math. 753 402–414 (1979)

    Google Scholar 

  8. Grishin, V.H.: Ob odnoi nestandartnoi logike i ee primenenii k teorii mnozhestv. In: Issledovaniya po formalnym yazykom i neklassicheskim logikam. Nauka Moscow 135–171 (1974)

  9. Grishin, V.H.: Ob algebraicheskoi semantike logiki lez sokrastrchenii. In: Issled. po form. logike i neklass. logikam. Nauka Moscow 1978, pp. 247–265

  10. Grishin, V.H.: Predikatnye i teoretiko-mnozhestvennye ischislenia osnovannye na logike bez sokrashchenia. Izv. AN SSSR 18 (1), 47–68 (1981): English translation, Math. USSR Izvestiya 18, 41–59 (1982)

    Google Scholar 

  11. Grishin, V.N.: O vese aksiomy svertyvania v teorii, osnovannoj na logike bez sokrashchenij. Matematicheskije zametki 66 (5), 643–652 (1999)

    Google Scholar 

  12. Hájek, P.: Metamathematics of fuzzy logic, Kluwer 1998

  13. Hájek, P.: Function symbols in fuzzy predicate logic. In: Proc. East West Fuzzy Logic Catalog. 2000, Zittau, pp. 2–8

  14. Hájek, P.: Mathematical fuzzy logic and set theory developed in it. In: Proc. Takeuti Symposium, Kobe, Japan 2003, pp. 58–69

  15. Hájek, P., Haniková, Z.: A set theory within fuzzy logic, Proc. 31st IEEE ISMVL Warsaw 2001, pp. 319–324

  16. Hájek, P., Haniková, Z.: A Development of Set Theory in Fuzzy Logic. In: Beyond Two: Theory and Applications of Multiple-Valued Logic (Fitting, M., Orlowska, E. (eds.)) - Heidelberg, Physica-Verlag 2003, pp. 273–285

  17. Hájek, P., Paris, J., Shepherdson, J.: The liar paradox and fuzzy logic. Journ. Symb. Logic 65, 339–346 (2000)

    Google Scholar 

  18. Hájek, P., Pudlák, P.: Metamathematics of first-order arithmetic. Springer-Verlag 1993

  19. Klaua, D.: Über einen Ansatz zur mehrwertigen Mengenlehre. Monatsb. Deutsch. Akad. Wiss. Berlin 7, 859–867 (1965)

    Google Scholar 

  20. Klaua, D.: Über einen zweiten Ansatz zur mehrwertigen Mengenlehre. Monatsb. Deutsch. Akad. Wiss. Berlin 8, 782–802 (1966)

    Google Scholar 

  21. Klaua, D.: Ein Ansatz zur mehrwertigen Mengenlehre. Math. Nachr. 33, 273–295 (1967)

    Google Scholar 

  22. Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, 2000

  23. Ragaz, M. E.: Arithmetische Klassifikation von Formelnmengen der unendlichwertigen Logik. Thesis, ETH Zürich, 1981

  24. Restall, G.: Arithmetic and truth in Lukasiewicz’s infinitely valued logic. Logique et Analyse 36, 25–38 (1993) (published 1995)

    Google Scholar 

  25. Rogers, H. Jr.: Theory of recursive functions and effective computability. McGraw-Hill, 1967

  26. Shirahata, M.: Phase-valued models of linear set theory, preprint, 1999

  27. Shirahata, M.: Linear set theory with strict comprehension. In: Proc. Asian Logic Conf., World Scientific 1996, pp. 223–245

  28. Shirahata, M.: A linear conservative extension of Zermelo-Fraenkel set theory. Studia Logica 56, 361–392 (1996)

    Article  Google Scholar 

  29. Shirahata, M.: A coherence space semantics for linear set theory. Preprint, 1999

  30. Shirahata, M.: Fixpoint theorem in linear set theory. Preprint 1999

  31. Skolem, T.: Bemerkungen zum Komprehensionsaxiom. Zeitchr. f. Math. Logik uns Grundl. der Math. 3, 1–17 (1957)

    Google Scholar 

  32. Takeuti, G., Titani, S.: Globalization of intuitionistic set theory. Annals Pure Appl Logic 33, 195–211 (1987)

    Article  Google Scholar 

  33. Takeuti, G., Titani, S.: Heyting valued universes of intuitionistic set theory. In: (Müller, G. H. et al., (ed.)) Logic Symposia Hakone 1979, 1980, Springer-Verlag 1981, pp. 189–306

  34. Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symb. Logic 49, 851–866 (1984)

    Google Scholar 

  35. Takeuti, G., Titani, S.: Fuzzy logic and fuzzy set theory. Arch. Math. Logic 32, 1–32 (1992)

    Article  Google Scholar 

  36. Terui, K.: Light affine set theory: a naive set theory of polynomial time. to appear in Studia Logica 2003

  37. Titani, S.: Completeness of global intuitionistic set theory. Journ. Symb. Logic 62, 605–627 (1997)

    Google Scholar 

  38. Titani, S.: A lattice-valued set theory. Arch. Math. Logic 38, 395–421 (1999)

    Article  Google Scholar 

  39. White, R. B.: The consistency of the axiom of comprehension in the infinite valued logic of Łukasiewicz. Journ. Phil. Logic 8, 502–537 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Long before them, Klaua and Gottwald studied various forms of iterated fuzzy power set constructions inside classical set theory, see the references.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hájek, P. On arithmetic in the Cantor- Łukasiewicz fuzzy set theory. Arch. Math. Logic 44, 763–782 (2005). https://doi.org/10.1007/s00153-005-0284-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-005-0284-0

Keywords or phrases

Navigation