Skip to main content

Set Theory and Arithmetic in Fuzzy Logic

  • Chapter
  • First Online:
Petr Hájek on Mathematical Fuzzy Logic

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 6))

Abstract

This chapter offers a review of Petr Hájek’s contributions to first-order axiomatic theories in fuzzy logic (in particular, ZF-style fuzzy set theories, arithmetic with a fuzzy truth predicate, and fuzzy set theory with unrestricted comprehension schema). Generalizations of Hájek’s results in these areas to MTL as the background logic are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the same time, we add the axiom \(y\notin \emptyset \) to the theory; see Theorem 4.3. Henceforth, whenever we add new constants and function symbols, we also add the corresponding axioms implicitly.

  2. 2.

    In fact, in any logic that proves the schema \((\varphi \rightarrow \varphi ^2)\rightarrow (\varphi \vee \lnot \varphi )\); cf. Remark 4.1.

  3. 3.

    Note the semantics of the existential quantifier: mere validity of a formula \((\exists {x})\varphi (x)\) in a model M does not guarantee that there is an object \(m\) for which \(\Vert \varphi (m)\Vert _\mathbf{M}=1\).

  4. 4.

    One can also take \(\le \) to be a defined symbol, relying on axiom (Q8).

  5. 5.

    An analogous statement can be formed for weaker theories, including \(\mathrm {Q}\).

  6. 6.

    In fact, Restall does not prove the crispness axiom in \(\mathrm {PA}\L \) but rather verifies it as a semantic consequence of the theory \(\mathrm {PA}\L \) in the standard MV-algebra; note that this is a weaker statement since \({\mathrm {\L }\forall }\) is not complete w.r.t. the standard MV-algebra. Still, each of the steps can be reconstructed syntactically in \(\mathrm {PA}\L \).

  7. 7.

    In fact, Hájek et al. (2000) proved a stronger statement, for a variant of \(\mathrm {PA}\L \mathrm {Tr}\) allowing the predicate symbol \(\mathrm {Tr}\) to occur in formulae the induction rule is applied to.

  8. 8.

    The consistency status of naïve comprehension over these logics is not known, either. Still, being weaker, they have better odds of consistency even if naïve comprehension turns out to be inconsistent over Łukasiewicz logic.

  9. 9.

    Hájek (2005 and subsequent papers) denoted the theory by \(\mathrm {C{\L }}_0\), whereas by \(\mathrm {C{\L }}\) he denoted an inconsistent extension of \(\mathrm {C{\L }}_0\). In this paper we shall use a systematic symbol \(\mathrm {C}_L\) for naïve set theory over the logic \(L\). The corresponding theory over standard \([0,1]_{{\L }}\)-valued Łukasiewicz logic is called \(\mathrm {H}\) by White (1979) and Yatabe (2007).

  10. 10.

    See Theorems 4.2–4.3 for the conservativeness of these (and subsequent similar) definitions in \(\mathrm {C_{{\L }}}\). The symbol \(\oplus \) denotes the ‘strong’ disjunction of Łukasiewicz logic, defined in \({\L }\) as \( \varphi \oplus \psi \equiv _{\mathrm {df}}{\lnot }({\lnot }\varphi \mathbin { \& }{\lnot }\psi )\).

  11. 11.

    The schematic translation of propositional tautologies into theorems of elementary fuzzy set theory Běhounek and Cintula (2005) only relies on certain distributions laws for quantifiers, and so works for \(\mathrm {C_{{\L }}}\) (as well as \(\mathrm {C_{\mathrm {MTL}}}\) introduced in Sect. 4.5.3). The converse direction (disproving theorems not supported by propositional tautologies), however, cannot be demonstrated as in elementary fuzzy set theory (namely, by constructing a model from the counterexample propositional evaluation), since no method of constructing models of \(\mathrm {C_{{\L }}}\) or \(\mathrm {C_{\mathrm {MTL}}}\) is known. In fact, it is well possible (esp. for \(\mathrm {C_{\mathrm {MTL}}}\)) that the comprehension schema does strengthen the logic of the theory (as it does exclude some algebras of semantic truth values, see comments following Theorem 4.21 and preceding Corollary 4.4 in Sect. 4.5.3).

  12. 12.

    In order to become a full-fledged theory of fuzzy sets, some kind of (preferably, conservative) extension of naïve fuzzy set theories would be needed (cf. Běhounek 2010; (Hájek 2013b, Sect. 3)). Such extensions, however, make the comprehension axioms restricted to the formulae in the original language, and so lose the intuitive appeal of the unrestricted comprehension schema. Cf. Remark 4.4 below.

  13. 13.

    Cantini (2003) as well as Hájek (2005 and subsequent papers) denote extensional equality by the symbol \(=_\mathrm {e}\).

  14. 14.

    In fact, as proved by Hájek (2013a), if \(\mathrm {C_{{\L }}}\vdash t\notin t\) for a term \(t\), then there is a term \(t'\) such that \( \mathrm {C_{{\L }}}\vdash t\approx t'\mathrel { \& }t\ne t'\). Moreover, he also proved that if \(\mathrm {C_{{\L }}}\vdash (\forall {u})(u\approx t\mathrel {\rightarrow }u\notin t)\) for a term \(t\), then there are infinitely many terms \(t_i\) such that \(\mathrm {C_{{\L }}}\) proves \(t\approx t_i\) and \(t_i\ne t_j\), for each \(i,j\in \mathbb N\). (Thus, for instance, there are infinitely many Leibniz-different empty sets.) The above terms \(t',t_i\) are defined by the fixed-point theorem (i.e., Theorem 4.13).

  15. 15.

    This is a corollary of the theorem given in footnote 14, as \(\omega \) satisfies its conditions.

  16. 16.

    Recall that an element \(x\) of an \(\mathrm {MTL}\)-algebra is called n-contractive if \(x^{n-1}=x^n\). Equivalently, \(x\) is \(n\)-contractive if \(x^{n-1}\) is idempotent. An \(\mathrm {MTL}\)-algebra is called \(n\)-contractive if all its elements are \(n\)-contractive.

  17. 17.

    Owing to the existence of a fixed point \(\rho _1\) of negation, naïve comprehension is furthermore inconsistent in logics with strict negation, i.e., in \(\mathrm {SMTL}\) and any of its extensions, which include \(\mathrm {\Pi MTL}\), \(\mathrm {SBL}\), \(\mathrm {\Pi }\), and \(\mathrm {G}\).

References

  • Běhounek, L. (2010). Extending Cantor-Łukasiewicz set theory with classes. In P. Cintula, E. P. Klement & L. N. Stout (Eds.), Lattice-valued logic and its applications: Abstracts of the 31st Linz seminar on fuzzy set theory (pp. 14–19). Linz.

    Google Scholar 

  • Běhounek, L., & Cintula, P. (2005). Fuzzy class theory. Fuzzy Sets and Systems 154,(1):34–55

    Google Scholar 

  • Běhounek, L., Cintula, P., & Hájek, P. (2011). Introduction to mathematical fuzzy logic. In P. Cintula, P. Hájek & C. Noguera (Eds.), Handbook of mathematical fuzzy logic (pp. 1–101). London: College Publications.

    Google Scholar 

  • Cantini, A. (2003). The undecidability of Gris̆in’s set theory. Studia Logica, 74, 345–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, C. C. (1963). The axiom of comprehension in infinite valued logic. Mathematica Scandinavica, 13, 9–30.

    MathSciNet  Google Scholar 

  • Fenstad, J. E. (1964). On the consistency of the axiom of comprehension in the Łukasiewicz infinite valued logic. Mathematica Scandinavica, 14, 65–74.

    MathSciNet  Google Scholar 

  • Gottwald, S. (1976a). Untersuchungen zur mehrwertigen Mengenlehre I. Mathematica Nachrichten, 72, 297–303.

    Article  MathSciNet  MATH  Google Scholar 

  • Gottwald, S. (1976b). Untersuchungen zur mehrwertigen Mengenlehre II. Mathematica Nachrichten, 74, 329–336.

    Article  MathSciNet  MATH  Google Scholar 

  • Gottwald, S. (1977). Untersuchungen zur mehrwertigen Mengenlehre III. Mathematica Nachrichten, 79, 207–217.

    Article  MathSciNet  MATH  Google Scholar 

  • Gottwald, S. (2006). Universes of fuzzy sets and axiomatizations of fuzzy set theory. Part I: Model-based and axiomatic approaches. Studia Logica, 82(2), 211–244.

    Article  MathSciNet  MATH  Google Scholar 

  • Grayson, R. J. (1979). Heyting-valued models for intuitionistic set theory. In M. Fourman, C. Mulvey & D. S. Scott (Eds.), Application of sheaves. Lecture notes in computer science (Vol. 743, pp. 402–414). Berlin: Springer.

    Google Scholar 

  • Grishin, V. N. (1982). Predicate and set-theoretic calculi based on logic without contractions. Mathematics of the USSR-Izvestiya, 18, 41–59.

    Google Scholar 

  • Hájek, P. (1998). Metamathematics of fuzzy logic. Dordercht: Kluwer.

    Google Scholar 

  • Hájek, P. (2000). Function symbols in fuzzy logic. In Proceedings of the East-West Fuzzy Colloquium, pp. 2–8, Zittau/Görlitz, IPM.

    Google Scholar 

  • Hájek, P., Paris, J., & Shepherdson, J. C. (2000). The liar paradox and fuzzy logic. Journal of Symbolic Logic, 65(1), 339–346.

    Article  MathSciNet  MATH  Google Scholar 

  • Hájek, P. (2001). Fuzzy logic and arithmetical hierarchy III. Studia Logica, 68(1), 129–142.

    Article  MathSciNet  MATH  Google Scholar 

  • Hájek, P., & Haniková, Z. (2003). A development of set theory in fuzzy logic. In M. Fitting & E. Orlowska (Eds.), Beyond two: Theory and applications of multiple-valued logic (pp. 273–285). Heidelberg: Physica-Verlag.

    Google Scholar 

  • Hájek, P. (2005). On arithmetic in Cantor-Łukasiewicz fuzzy set theory. Archive for Mathematical Logic, 44(6), 763–782.

    Article  MathSciNet  MATH  Google Scholar 

  • Hájek, P., & Cintula, P. (2006). On theories and models in fuzzy predicate logics. Journal of Symbolic Logic, 71(3), 863–880.

    Article  MathSciNet  MATH  Google Scholar 

  • Hájek, P. (2013a). On equality and natural numbers in Cantor-Łukasiewicz set theory. Logic Journal of the Interest Group of Pure and Applied Logic, 21(1), 91–100.

    Google Scholar 

  • Hájek, P. (2013b). Some remarks on Cantor-Łukasiewicz fuzzy set theory. Logic Journal of the Interest Group of Pure and Applied Logic, 21(2), 183–186.

    Google Scholar 

  • Hájek, P., & Haniková, Z. (2013). Interpreting lattice-valued set theory in fuzzy set theory. Logic Journal of the Interest Group of Pure and Applied Logic, 2(1), 77–90.

    Google Scholar 

  • Hájek, P., & Pudlák, P. (1993). Metamathematics of first-order arithmetic. Berlin: Springer.

    Google Scholar 

  • Haniková, Z. (2004). Mathematical and metamathematical properties of fuzzy logic. PhD thesis, Charles University in Prague, Faculty of Mathematics and Physics.

    Google Scholar 

  • Kaye, R. (1991). Models of Peano arithmetic. Oxford: Oxford University Press.

    Google Scholar 

  • Klaua, D. (1965). Über einen Ansatz zur mehrwertigen Mengenlehre. Monatsb Deutsch Akad Wiss Berlin, 7, 859–867.

    MathSciNet  MATH  Google Scholar 

  • Klaua, D. (1966). Über einen zweiten Ansatz zur mehrwertigen Mengenlehre. Monatsb Deutsch Akad Wiss Berlin, 8, 782–802.

    MathSciNet  MATH  Google Scholar 

  • Klaua, D. (1967). Ein Ansatz zur mehrwertigen Mengenlehre. Mathematische Nachr, 33, 273–296.

    Article  MathSciNet  MATH  Google Scholar 

  • Montagna, F. (2001). Three complexity problems in quantified fuzzy logic. Studia Logica, 68(1), 143–152.

    Article  MathSciNet  MATH  Google Scholar 

  • Petersen, U. (2000). Logic without contraction as based on inclusion and unrestricted abstraction. Studia Logica, 64, 365–403.

    Article  MathSciNet  MATH  Google Scholar 

  • Powell, W. C. (1975). Extending Gödel’s negative interpretation to ZF. Journal of Symbolic Logic, 40(2), 221–229.

    Article  MathSciNet  MATH  Google Scholar 

  • Restall, G. (1995). Arithmetic and truth in Łukasiewicz’s infinitely valued logic. Logique et Analyse, 36, 25–38.

    MathSciNet  Google Scholar 

  • Skolem, T. (1957). Bemerkungen zum Komprehensionsaxiom. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 3, 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  • Skolem, T. (1960). Investigations on comprehension axiom without negation in the defining propositional functions. Notre Dame Journal of Formal Logic, 1, 13–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Takeuti, G., & Titani, S. (1984). Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. Journal of Symbolic Logic, 49(3), 851–866.

    Article  MathSciNet  MATH  Google Scholar 

  • Takeuti, G., & Titani, S. (1992). Fuzzy logic and fuzzy set theory. Archive for Mathematical Logic, 32, 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Terui, K. (2004). Light affine set theory: A naive set theory of polynomial time. Studia Logica, 77(1), 9–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Titani, S. (1999). A lattice-valued set theory. Archive for Mathematical Logic, 38, 395–421.

    Article  MathSciNet  MATH  Google Scholar 

  • White, R. B. (1979). The consistency of the axiom of comprehension in the infinite-valued predicate logic of Łukasiewicz. Journal of Philosophical Logic, 8, 509–534.

    Article  MathSciNet  MATH  Google Scholar 

  • Yatabe, S. (2007). Distinguishing non-standard natural numbers in a set theory within Łukasiewicz logic. Archive for Mathematical Logic, 46, 281–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Yatabe, S. (2009). Comprehension contradicts to the induction within Łukasiewicz predicate logic. Archive for Mathematical Logic, 48, 265–268.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by grants No. P103/10/P234 (L. Běhounek) and P202/10/1826 (Z. Haniková) of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Běhounek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Běhounek, L., Haniková, Z. (2015). Set Theory and Arithmetic in Fuzzy Logic. In: Montagna, F. (eds) Petr Hájek on Mathematical Fuzzy Logic. Outstanding Contributions to Logic, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-06233-4_4

Download citation

Publish with us

Policies and ethics