Skip to main content
Log in

Increase in tacrolimus trough levels after steroid withdrawal

  • Original Article
  • Published:
Transplant International

Abstract

Although there are experimental reports of cytochrome P450 3A4 iso-enzyme (CYP3A4) induction by glucocorticoids, there are no clinical reports about an interaction between tacrolimus and steroids. Therefore, tacrolimus trough level and dose were compared after dose-normalization before and after withdrawal of prednisolone. After withdrawal of 5 mg prednisolone, the median tacrolimus dose-normalized level increased by 14% in the retrospective (n=54), and by 11% in the prospective (n=8) part of the study. After withdrawal of 10 mg, this increase was 33% (n=30) and 36% (n=14), respectively. An additional pharmacokinetic part of the study (n=8) revealed an 18% increase in AUC (P=0.05) after withdrawal of 5 mg prednisolone, which is compatible with a reduced metabolism after steroid withdrawal. The significant increase in tacrolimus exposure after steroid withdrawal may on the one hand counteract the reduction in immunosuppression intended by steroid withdrawal, and, on the other hand, may result in an increase of serum creatinine which could be misinterpreted as rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Boots JMM, van Duijnhoven EM, Christiaans MHL, Wolffenbuttel BHR, van Hooff JP (2002) Glucose metabolism in renal transplant recipients on tacrolimus: the effect of steroid withdrawal and tacrolimus trough level reduction. JASN 13: 221–227

    CAS  PubMed  Google Scholar 

  2. Boots JMM, van Duijnhoven EM, Christiaans MHL, Nieman FHM, van Suylen RJ, van Hooff JP (2001) Single center experience with tacrolimus versus cyclosporin-Neoral in renal transplant recipients. Transpl Int 14: 370–383

    Article  CAS  PubMed  Google Scholar 

  3. Chakrabarti P, Wong HY, Scantlebury VP, Jordan ML, Vivas C, Ellis D, Lombardozzi-Lane S, Hakala TR, Fung JJ, Simmons RL, Strazl TE, Shapiro R (2000) Outcome after steroid withdrawal in pediatric renal transplant patients receiving tacrolimus based immunosuppression. Transplantation 70: 760–764

    Google Scholar 

  4. Christiaans M, van Duijnhoven E, Beysens T, Undre N, Schäfer A, van Hooff J (1998) Effects of breakfast on the oral bioavailibility of tacrolimus and changes in pharmacokinetics at different times posttransplant in renal transplant recipients. Transplant Proc 30: 1271–1273

    Article  CAS  PubMed  Google Scholar 

  5. Hricik DE, Kupin WL, First MR (1994) Steroid-free immunosuppression after renal transplantation. J Am Soc Nephrol [Suppl] 4: 10–16

    Google Scholar 

  6. Johnson C, Ahsan N, Gonwa T, Halloran P, Stegall M, Hardy M, Metzger R, Shield C, Rocher L, Scandling J, Sorensen J, Mulloy L, Light J, Corwin C, Danovitch G, Wachs M, van Veldhuisen P, Salm K, Tolzman D, Fitzsimmons WE (2000) Randomized trial of tacrolimus (Prograf) in combination with azathioprine or mycophenolate mofetil versus cyclosporine (Neoral) with mycophenolate mofetil after cadaveric kidney transplantation. Transplantation 69: 834–841

    CAS  PubMed  Google Scholar 

  7. Lo A, Burckart GJ (1999) P-glycoprotein and drug therapy in organ transplantation. J Clin Pharmacol 39: 995–1005

    CAS  PubMed  Google Scholar 

  8. Mayer AD, Dmitrewski J, Squifflet JP, Bessen T, Vanrenterghem Y, Donck J, van Hooff J, Christiaans M, Morales JM, Andres A, Johnson RWG, Short C, Buchholz B, Rehmert N, Land W, Schleibner S, Forsythe JLR, Talbot D, Neumayer HH, Hauser I, Ericzon BG, Brattström C, Claesson K, Mühlbacher F, Pohanka E (1997) Multicenter randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of renal allograft rejection: a report of the European Tacrolimus Multicenter Renal Study Group. Transplantation 64: 436–443

    CAS  PubMed  Google Scholar 

  9. Moochhala SM, Lee EJD, Earnest L, Wong JYY, Ngoi SS (1991) Inhibition of drug metabolism in rat and human liver microsomes by FK 506 and cyclosporine. Transplant Proc 23: 2786–2788

    CAS  PubMed  Google Scholar 

  10. Omar G, Shah LA, Thomson AW, Whiting PH, Burke MD (1993) FK 506 inhibition of cyclosporine metabolism by human liver microsomes. Transplant Proc 23: 690–698

    Google Scholar 

  11. Oppenheimer F (2000) Steroid withdrawal in renal transplant recipients. Transplant Proc 32: 14–15

    Article  PubMed  Google Scholar 

  12. Piekoszewski W, Chow FS, Jusko WJ (1994) Pharmacokinetic and pharmacodynamic effects of coadministration of methylprednisolone and tacrolimus in rabbits. Pharmacol Exp Ther 269: 103–109

    CAS  Google Scholar 

  13. Pirsch JD, Miller J, Deierhoi MH, Vincenti F, Filo RS (1997) A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. Transplantation 63: 977–983

    CAS  PubMed  Google Scholar 

  14. Plosker GL (2000) Tacrolimus: a further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs 59: 323–389

    CAS  PubMed  Google Scholar 

  15. Sattler M, Guengerich PF, Yun CH, Christians U, Sewing KF (1992) Cytochrome p-450 3A enzymes are responsible for biotransfromation of FK 506 and rapamycin in man and rat. Drug Metab Dispos 20: 753–761

    CAS  PubMed  Google Scholar 

  16. Schulak JA, Hricik DE (1994) Steroid withdrawal after renal transplantation. Clin Transplant 8: 211–216

    CAS  PubMed  Google Scholar 

  17. Sewing KF (1994) Pharmacokinetics, dosing principles and blood level monitoring of FK506. Transplant Proc 26: 3267–3269

    CAS  PubMed  Google Scholar 

  18. Shah LA, Whiting PH, Omar G, Thomson AW, Burke MD (1991) Effects of FK 506 on human hepatic microsomal cytochrome P-450-dependent drug metabolism in vitro. Transplant Proc 23: 2783–2785

    CAS  PubMed  Google Scholar 

  19. Shapiro R, Jordan ML, Scantlebury VP (1995) The superiority of tacrolimus in renal transplant recipients the Pittsburgh experience. Clin Transpl 199–205

  20. Tredger JM, Gilkes CD, Gonde CE (1999) Performance of the Imx tacrolimus II assay and practical limits of detection. Clin Chem 45: 1881–1882

    CAS  PubMed  Google Scholar 

  21. Wallemacq PE, Leal T, Besse T, Squifflet J-P, Reding R, Otte J-B, Lerut J, Hassoun A (1997) Imx Tacrolimus II vs Imx tacrolimus microparticle enzyme immunoassay evaluated in renal and hepatic transplant patients. Clin Chem 43: 1989–1991

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Monique Mullens for her assistance with the pharmacokinetic part of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elly M. van Duijnhoven.

About this article

Cite this article

van Duijnhoven, E.M., Boots, J.M.M., Christiaans, M.H.L. et al. Increase in tacrolimus trough levels after steroid withdrawal. Transpl Int 16, 721–725 (2003). https://doi.org/10.1007/s00147-003-0615-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00147-003-0615-1

Keywords

Navigation