Skip to main content

Advertisement

Log in

The intensive care medicine research agenda on septic shock

  • Research Agenda
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Septic shock remains a global health challenge with millions of cases every year, high rates of mortality and morbidity, impaired quality of life among survivors and relatives, and high resource use both in developed and developing nations. Care and outcomes are improving through organisational initiatives and updated clinical practice guidelines based on clinical research mainly carried out by large collaborative networks. This progress is likely to continue through the collaborative work of the established and merging trials groups in many parts of the world and through refined trial methodology and translational work. In this review, international experts summarize the current position of clinical research in septic shock and propose a research agenda to advance this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bernard GR, Vincent JL, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709. doi:10.1056/NEJM200103083441001

    Article  CAS  PubMed  Google Scholar 

  2. Ranieri VM, Thompson BT, Barie PS et al (2012) Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 366:2055–2064. doi:10.1056/NEJMoa1202290

    Article  CAS  PubMed  Google Scholar 

  3. Angus DC (2011) The search for effective therapy for sepsis: back to the drawing board? JAMA 306:2614–2615. doi:10.1001/jama.2011.1853

    Article  CAS  PubMed  Google Scholar 

  4. Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810. doi:10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. doi:10.1007/s00134-017-4683-6

    Google Scholar 

  6. Levy MM, Rhodes A, Phillips GS et al (2014) Surviving Sepsis Campaign: association between performance metrics and outcomes in a 7.5-year study. Intensive Care Med 40:1623–1633. doi:10.1007/s00134-014-3496-0

    Article  PubMed  Google Scholar 

  7. Aaronson EL, Filbin MR, Brown DFM et al (2016) New mandated centers for medicare and medicaid services requirements for sepsis reporting: caution from the field. J Emerg Med. doi:10.1016/j.jemermed.2016.08.009

    Google Scholar 

  8. Phua J, Koh Y, Du B et al (2011) Management of severe sepsis in patients admitted to Asian intensive care units: prospective cohort study. BMJ 342:d3245

    Article  PubMed  PubMed Central  Google Scholar 

  9. Noritomi DT, Ranzani OT, Monteiro MB et al (2014) Implementation of a multifaceted sepsis education program in an emerging country setting: clinical outcomes and cost-effectiveness in a long-term follow-up study. Intensive Care Med 40:182–191. doi:10.1007/s00134-013-3131-5

    Article  PubMed  Google Scholar 

  10. Rhodes A, Phillips G, Beale R et al (2015) The Surviving Sepsis Campaign bundles and outcome: results from the International Multicentre Prevalence Study on Sepsis (the IMPreSS study). Intensive Care Med 41:1620–1628. doi:10.1007/s00134-015-3906-y

    Article  PubMed  Google Scholar 

  11. Shin TG, Jo IJ, Choi DJ et al (2013) The adverse effect of emergency department crowding on compliance with the resuscitation bundle in the management of severe sepsis and septic shock. Crit Care Lond Engl 17:R224. doi:10.1186/cc13047

    Article  Google Scholar 

  12. Almeida M, Ribeiro O, Aragão I et al (2013) Differences in compliance with Surviving Sepsis Campaign recommendations according to hospital entrance time: day versus night. Crit Care Lond Engl 17:R79. doi:10.1186/cc12689

    Article  Google Scholar 

  13. Borgert MJ, Goossens A, Dongelmans DA (2015) What are effective strategies for the implementation of care bundles on ICUs: a systematic review. Implement Sci IS 10:119. doi:10.1186/s13012-015-0306-1

    Article  PubMed  Google Scholar 

  14. Pocock SJ, Stone GW (2016) The primary outcome is positive—is that good enough? N Engl J Med 375:971–979. doi:10.1056/NEJMra1601511

    Article  PubMed  Google Scholar 

  15. Pocock SJ, Stone GW (2016) The primary outcome fails—what next? N Engl J Med 375:861–870. doi:10.1056/NEJMra1510064

    Article  PubMed  Google Scholar 

  16. Harhay MO, Wagner J, Ratcliffe SJ et al (2014) Outcomes and statistical power in adult critical care randomized trials. Am J Respir Crit Care Med 189:1469–1478. doi:10.1164/rccm.201401-0056CP

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zarychanski R, Abou-Setta AM, Turgeon AF et al (2013) Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 309:678–688. doi:10.1001/jama.2013.430

    Article  CAS  PubMed  Google Scholar 

  18. Iwashyna TJ, Burke JF, Sussman JB et al (2015) Implications of heterogeneity of treatment effect for reporting and analysis of randomized trials in critical care. Am J Respir Crit Care Med 192:1045–1051. doi:10.1164/rccm.201411-2125CP

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377. doi:10.1056/NEJMoa010307

    Article  CAS  PubMed  Google Scholar 

  20. Investigators ProCESS, Yealy DM, Kellum JA et al (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370:1683–1693. doi:10.1056/NEJMoa1401602

    Article  CAS  Google Scholar 

  21. Peake SL, ARISE Investigators, ANZICS Clinical Trials Group et al (2014) Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371:1496–1506. doi:10.1056/NEJMoa1404380

    Article  CAS  PubMed  Google Scholar 

  22. Mouncey PR, Osborn TM, Power GS et al (2015) Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 372:1301–1311. doi:10.1056/NEJMoa1500896

    Article  CAS  PubMed  Google Scholar 

  23. ProCESS ARISE, Committee ProMISe Methodology Writing, Huang DT, Angus DC et al (2013) Harmonizing international trials of early goal-directed resuscitation for severe sepsis and septic shock: methodology of ProCESS, ARISE, and ProMISe. Intensive Care Med 39:1760–1775. doi:10.1007/s00134-013-3024-7

    Article  Google Scholar 

  24. PRISM Investigators (2017) Early, Goal-Directed Therapy for Septic Shock - A Patient-Level Meta-Analysis. N Engl J Med. doi:10.1056/NEJMoa1701380

    Google Scholar 

  25. Maitland K, Kiguli S, Opoka RO et al (2011) Mortality after fluid bolus in African children with severe infection. N Engl J Med 364:2483–2495. doi:10.1056/NEJMoa1101549

    Article  CAS  PubMed  Google Scholar 

  26. Hjortrup PB, Haase N, Bundgaard H et al (2016) Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med 42:1695–1705. doi:10.1007/s00134-016-4500-7

    Article  PubMed  Google Scholar 

  27. Girardis M, Busani S, Damiani E et al (2016) Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA 316:1583–1589. doi:10.1001/jama.2016.11993

    Article  CAS  PubMed  Google Scholar 

  28. Angus DC, Linde-Zwirble WT, Lidicker J et al (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    Article  CAS  PubMed  Google Scholar 

  29. Perner A, Haase N, Winkel P et al (2014) Long-term outcomes in patients with severe sepsis randomised to resuscitation with hydroxyethyl starch 130/0.42 or Ringer’s acetate. Intensive Care Med 40:927–934. doi:10.1007/s00134-014-3311-y

    Article  CAS  PubMed  Google Scholar 

  30. Mayr FB, Talisa VB, Balakumar V et al (2017) Proportion and cost of unplanned 30-day readmissions after sepsis compared with other medical conditions. JAMA 317:530–531. doi:10.1001/jama.2016.20468

    Article  PubMed  Google Scholar 

  31. Herridge MS, Chu LM, Matte A et al (2016) The RECOVER Program: disability risk groups and 1-year outcome after 7 or more days of mechanical ventilation. Am J Respir Crit Care Med 194:831–844. doi:10.1164/rccm.201512-2343OC

    Article  PubMed  Google Scholar 

  32. Cameron JI, Wittenberg E, Prosser LA (2016) Caregivers and families of critically Ill patients. N Engl J Med 375:1000–1002. doi:10.1056/NEJMc1608225

    Article  PubMed  Google Scholar 

  33. Lamontagne F, Cohen D, Herridge M (2016) Understanding patient-centredness: contrasting expert versus patient perspectives on vasopressor therapy for shock. Intensive Care Med. doi:10.1007/s00134-016-4518-x

    Google Scholar 

  34. Selby JV, Forsythe L, Sox HC (2015) Stakeholder-driven comparative effectiveness research: an update from PCORI. JAMA 314:2235–2236. doi:10.1001/jama.2015.15139

    Article  CAS  PubMed  Google Scholar 

  35. Bafeta A, Dechartres A, Trinquart L et al (2012) Impact of single centre status on estimates of intervention effects in trials with continuous outcomes: meta-epidemiological study. BMJ 344:e813

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wiedermann CJ, Bellomo R, Perner A (2016) Is the literature inconclusive about the harm from HES? No. Intensive Care Med. doi:10.1007/s00134-016-4275-x

    PubMed  Google Scholar 

  37. Landoni G, Comis M, Conte M et al (2015) Mortality in multicenter critical care trials: an analysis of interventions with a significant effect. Crit Care Med 43:1559–1568. doi:10.1097/CCM.0000000000000974

    Article  PubMed  Google Scholar 

  38. Angus DC, Barnato AE, Bell D et al (2015) A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISe Investigators. Intensive Care Med 41:1549–1560. doi:10.1007/s00134-015-3822-1

    Article  CAS  PubMed  Google Scholar 

  39. Ranieri VM, Thompson BT, Finfer S et al (2011) Unblinding plan of PROWESS-SHOCK trial. Intensive Care Med 37:1384–1385. doi:10.1007/s00134-011-2272-7

    Article  PubMed  Google Scholar 

  40. Perner A, Haase N, Guttormsen AB et al (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367:124–134. doi:10.1056/NEJMoa1204242

    Article  CAS  PubMed  Google Scholar 

  41. Myburgh JA, Finfer S, Bellomo R et al (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367:1901–1911. doi:10.1056/NEJMoa1209759

    Article  CAS  PubMed  Google Scholar 

  42. Haase N, Wetterslev J, Winkel P, Perner A (2013) Bleeding and risk of death with hydroxyethyl starch in severe sepsis: post hoc analyses of a randomized clinical trial. Intensive Care Med 39:2126–2134. doi:10.1007/s00134-013-3111-9

    Article  CAS  PubMed  Google Scholar 

  43. Bion J, Bellomo R, Myburgh J et al (2014) Hydroxyethyl starch: putting patient safety first. Intensive Care Med 40:256–259. doi:10.1007/s00134-013-3167-6

    Article  PubMed  Google Scholar 

  44. Hébert PC, Wells G, Blajchman MA et al (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 340:409–417. doi:10.1056/NEJM199902113400601

    Article  PubMed  Google Scholar 

  45. Holst LB, Haase N, Wetterslev J et al (2014) Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med 371:1381–1391. doi:10.1056/NEJMoa1406617

    Article  PubMed  CAS  Google Scholar 

  46. Rygård SL, Holst LB, Wetterslev J et al (2016) Long-term outcomes in patients with septic shock transfused at a lower versus a higher haemoglobin threshold: the TRISS randomised, multicentre clinical trial. Intensive Care Med 42:1685–1694. doi:10.1007/s00134-016-4437-x

    Article  PubMed  CAS  Google Scholar 

  47. Lundh A, Sismondo S, Lexchin J, et al (2012) Industry sponsorship and research outcome. Cochrane Database Syst Rev 12: MR000033. doi: 10.1002/14651858.MR000033.pub2

  48. Savović J, Jones HE, Altman DG et al (2012) Influence of reported study design characteristics on intervention effect estimates from randomized, controlled trials. Ann Intern Med 157:429–438. doi:10.7326/0003-4819-157-6-201209180-00537

    Article  PubMed  Google Scholar 

  49. Ziff OJ, Lane DA, Samra M et al (2015) Safety and efficacy of digoxin: systematic review and meta-analysis of observational and controlled trial data. BMJ 351:h4451

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228. doi:10.1007/s00134-012-2769-8

    Article  CAS  PubMed  Google Scholar 

  51. Guyatt GH, Oxman AD, Vist GE et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926. doi:10.1136/bmj.39489.470347.AD

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shankar-Hari M, Phillips GS, Levy ML et al (2016) Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:775–787. doi:10.1001/jama.2016.0289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sterling SA, Miller WR, Pryor J et al (2015) The impact of timing of antibiotics on outcomes in severe sepsis and septic shock: a systematic review and meta-analysis. Crit Care Med 43:1907–1915. doi:10.1097/CCM.0000000000001142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Groot B, Ansems A, Gerling DH et al (2015) The association between time to antibiotics and relevant clinical outcomes in emergency department patients with various stages of sepsis: a prospective multi-center study. Crit Care Lond Engl 19:194. doi:10.1186/s13054-015-0936-3

    Article  Google Scholar 

  55. McGregor JC, Rich SE, Harris AD et al (2007) A systematic review of the methods used to assess the association between appropriate antibiotic therapy and mortality in bacteremic patients. Clin Infect Dis 45:329–337. doi:10.1086/519283

    Article  PubMed  Google Scholar 

  56. Eyler RF, Mueller BA, Medscape (2011) Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol 7:226–235. doi:10.1038/nrneph.2011.12

    Article  CAS  PubMed  Google Scholar 

  57. Abdul-Aziz MH, Sulaiman H, Mat-Nor M-B et al (2016) Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med 42:1535–1545. doi:10.1007/s00134-015-4188-0

    Article  CAS  PubMed  Google Scholar 

  58. Roberts JA, Taccone FS, Lipman J (2016) Understanding PK/PD. Intensive Care Med 42:1797–1800. doi:10.1007/s00134-015-4032-6

    Article  PubMed  Google Scholar 

  59. Shankar-Hari M, Harrison DA, Rowan KM (2016) Differences in impact of definitional elements on mortality precludes international comparisons of sepsis epidemiology-A cohort study illustrating the need for standardized reporting. Crit Care Med 44:2223–2230. doi:10.1097/CCM.0000000000001876

    Article  PubMed  Google Scholar 

  60. Kaukonen K-M, Bailey M, Suzuki S et al (2014) Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA 311:1308–1316. doi:10.1001/jama.2014.2637

    Article  CAS  PubMed  Google Scholar 

  61. Spellberg B, Bartlett JG, Gilbert DN (2013) The future of antibiotics and resistance. N Engl J Med 368:299–302. doi:10.1056/NEJMp1215093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perner A, Gordon AC, De Backer D et al (2016) Sepsis: frontiers in diagnosis, resuscitation and antibiotic therapy. Intensive Care Med 42:1958–1969. doi:10.1007/s00134-016-4577-z

    Article  CAS  PubMed  Google Scholar 

  63. Asfar P, Meziani F, Hamel J-F et al (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370:1583–1593. doi:10.1056/NEJMoa1312173

    Article  CAS  PubMed  Google Scholar 

  64. Rygård SL, Holst LB, Wetterslev J et al (2017) Higher vs. lower haemoglobin threshold for transfusion in septic shock: subgroup analyses of the TRISS trial. Acta Anaesthesiol Scand 61:166–175. doi:10.1111/aas.12837

    Article  PubMed  CAS  Google Scholar 

  65. Russell JA, Lee T, Singer J et al (2017) The septic shock 3.0 definition and trials: a vasopressin and septic shock trial experience. Crit Care. doi:10.1097/CCM.0000000000002323

    Google Scholar 

  66. Seymour CW, Liu VX, Iwashyna TJ et al (2016) Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:762–774. doi:10.1001/jama.2016.0288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bhattacharjee P, Edelson DP, Churpek MM (2016) Identifying patients with sepsis on the hospital wards. Chest. doi:10.1016/j.chest.2016.06.020

    PubMed Central  Google Scholar 

  68. Cohen J, Vincent J-L, Adhikari NKJ et al (2015) Sepsis: a roadmap for future research. Lancet Infect Dis 15:581–614. doi:10.1016/S1473-3099(15)70112-X

    Article  PubMed  Google Scholar 

  69. Prescott HC, Calfee CS, Thompson BT et al (2016) Toward smarter lumping and smarter splitting: rethinking strategies for sepsis and acute respiratory distress syndrome clinical trial design. Am J Respir Crit Care Med 194:147–155. doi:10.1164/rccm.201512-2544CP

    Article  PubMed  PubMed Central  Google Scholar 

  70. Famous KR, Delucchi K, Ware LB et al (2016) ARDS subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. doi:10.1164/rccm.201603-0645OC

    Google Scholar 

  71. Wong HR, Cvijanovich NZ, Anas N et al (2015) Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med 191:309–315. doi:10.1164/rccm.201410-1864OC

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hotchkiss RS, Sherwood ER (2015) Immunology. Getting sepsis therapy right. Science 347:1201–1202. doi:10.1126/science.aaa8334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Iwashyna TJ, Liu V (2014) What’s so different about big data?. A primer for clinicians trained to think epidemiologically. Ann Am Thorac Soc 11:1130–1135. doi:10.1513/AnnalsATS.201405-185AS

    Article  PubMed  PubMed Central  Google Scholar 

  74. Heyland DK, Muscedere J, Drover J et al (2011) Persistent organ dysfunction plus death: a novel, composite outcome measure for critical care trials. Crit Care Lond Engl 15:R98. doi:10.1186/cc10110

    Article  Google Scholar 

  75. Montori VM, Permanyer-Miralda G, Ferreira-González I et al (2005) Validity of composite end points in clinical trials. BMJ 330:594–596. doi:10.1136/bmj.330.7491.594

    Article  PubMed  PubMed Central  Google Scholar 

  76. Boyd JH, Forbes J, Nakada T et al (2011) Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 39:259–265. doi:10.1097/CCM.0b013e3181feeb15

    Article  PubMed  Google Scholar 

  77. Wiedemann HP, Wheeler AP, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575. doi:10.1056/NEJMoa062200

    Article  CAS  PubMed  Google Scholar 

  78. Hranjec T, Rosenberger LH, Swenson B et al (2012) Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis 12:774–780. doi:10.1016/S1473-3099(12)70151-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lamontagne F, Meade MO, Hébert PC et al (2016) Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial. Intensive Care Med 42:542–550. doi:10.1007/s00134-016-4237-3

    Article  CAS  PubMed  Google Scholar 

  80. Russell JA, Walley KR, Singer J et al (2008) Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 358:877–887. doi:10.1056/NEJMoa067373

    Article  CAS  PubMed  Google Scholar 

  81. Gordon AC, Mason AJ, Thirunavukkarasu N et al (2016) Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA 316:509–518. doi:10.1001/jama.2016.10485

    Article  CAS  PubMed  Google Scholar 

  82. Chawla LS, Busse L, Brasha-Mitchell E et al (2014) Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care Lond Engl 18:534. doi:10.1186/s13054-014-0534-9

    Article  Google Scholar 

  83. Morelli A, Ertmer C, Westphal M et al (2013) Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 310:1683–1691. doi:10.1001/jama.2013.278477

    Article  PubMed  CAS  Google Scholar 

  84. Dishy V, Sofowora GG, Xie HG et al (2001) The effect of common polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med 345:1030–1035. doi:10.1056/NEJMoa010819

    Article  CAS  PubMed  Google Scholar 

  85. Laukkanen JA, Mäkikallio TH, Kauhanen J, Kurl S (2009) Insertion/deletion polymorphism in alpha2-adrenergic receptor gene is a genetic risk factor for sudden cardiac death. Am Heart J 158:615–621. doi:10.1016/j.ahj.2009.07.023

    Article  CAS  PubMed  Google Scholar 

  86. Nakada T-A, Russell JA, Boyd JH et al (2010) beta2-Adrenergic receptor gene polymorphism is associated with mortality in septic shock. Am J Respir Crit Care Med 181:143–149. doi:10.1164/rccm.200903-0332OC

    Article  CAS  PubMed  Google Scholar 

  87. Venkatesh B, Myburgh J, Finfer S et al (2013) The ADRENAL study protocol: adjunctive corticosteroid treatment in critically ill patients with septic shock. Crit Care Resusc 15:83–88

    PubMed  Google Scholar 

  88. Bentzer P, Fjell C, Walley KR et al (2016) Plasma cytokine levels predict response to corticosteroids in septic shock. Intensive Care Med 42:1970–1979. doi:10.1007/s00134-016-4338-z

    Article  CAS  PubMed  Google Scholar 

  89. Marik PE, Khangoora V, Rivera R et al (2016) Hydrocortisone, Vitamin C and Thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. doi:10.1016/j.chest.2016.11.036

    PubMed  Google Scholar 

  90. Brealey D, Brand M, Hargreaves I et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223. doi:10.1016/S0140-6736(02)09459-X

    Article  CAS  PubMed  Google Scholar 

  91. Lowes DA, Webster NR, Murphy MP, Galley HF (2013) Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth 110:472–480. doi:10.1093/bja/aes577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lancel S, Hassoun SM, Favory R et al (2009) Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther 329:641–648. doi:10.1124/jpet.108.148049

    Article  CAS  PubMed  Google Scholar 

  93. Walter J, Ware LB, Matthay MA (2014) Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med 2:1016–1026. doi:10.1016/S2213-2600(14)70217-6

    Article  CAS  PubMed  Google Scholar 

  94. Fisher CJ, Agosti JM, Opal SM et al (1996) Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N Engl J Med 334:1697–1702. doi:10.1056/NEJM199606273342603

    Article  CAS  PubMed  Google Scholar 

  95. Reinhart K, Menges T, Gardlund B et al (2001) Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis: the RAMSES Study. Crit Care Med 29:765–769

    Article  CAS  PubMed  Google Scholar 

  96. Walley KR, Thain KR, Russell JA et al (2014) PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med 6:258ra143. doi:10.1126/scitranslmed.3008782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Davenport EE, Burnham KL, Radhakrishnan J et al (2016) Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med 4:259–271. doi:10.1016/S2213-2600(16)00046-1

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13:260–268. doi:10.1016/S1473-3099(13)70001-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tsoukalas A, Albertson T, Tagkopoulos I (2015) From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis. JMIR Med Inform 3:e11. doi:10.2196/medinform.3445

    Article  PubMed  PubMed Central  Google Scholar 

  100. James ND, Sydes MR, Clarke NW et al (2016) Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 387:1163–1177. doi:10.1016/S0140-6736(15)01037-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Angus DC (2015) Fusing randomized trials with big data: the key to self-learning health care systems? JAMA 314:767–768. doi:10.1001/jama.2015.7762

    Article  CAS  PubMed  Google Scholar 

  102. Shankar-Hari M, Rubenfeld GD (2017) The use of enrichment to reduce statistically indeterminate or negative trials in critical care. Anaesthesia 72:560–565. doi:10.1111/anae.13870

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Perner.

Ethics declarations

Conflicts of interest

AP is member of the steering committee and national investigator of a vasopressin trial in septic shock sponsored by Ferring Pharmaceuticals; his department is reimbursed for his time. The department also receives research funding from Fresenius Kabi and CSL Behring. ACG has received speaker fees from Orion Pharmaceuticals and Amomed. He has consulted for Ferring Pharmaceuticals, Tenax Therapeutics, GlaxoSmithKline and received grant support from Orion Pharmaceuticals, Tenax Therapeutics and HCA International with funds paid to his institution. He is the Chief Investigator for two NIHR funded trials in septic shock: VANISH—examining vasopressin and LeoPARDS—examining levosimendan. He is supported by an NIHR Research Professorship award. DCA has received consulting fees from Abbott, Bayer, Beckman-Coulter, Biocartis, GenMark, GlaxoSmithKline, and Sobi for advice on sepsis trial design and is paid by Ferring for his participation on the Trial Steering Committee of the Sepsis-ACT multicenter trial of selepressin for septic shock. JMa is the chair of InFACT, a DSMB member for AK Pharma and a consultant for Regeneron Therapeutics and Bristol-Myers Squibb. JMy was the principal investigator of the CHEST trial; his institution, the George Institute for Global Health, has received unrestricted grant funding from Fresenius Kabi and Baxter Healthcare in relation to fluid resuscitation research; he is supported by a Practitioner Fellowship from the National Health and Medical Research Council of Australia. JR reports patents owned by the University of British Columbia (UBC) that are related to PCSK9 inhibitor(s) and sepsis and related to the use of vasopressin in septic shock. JR is an inventor on these patents. JR is a founder, Director and shareholder in Cyon Therapeutics Inc. (developing a sepsis therapy). Dr. Russell has share options in Leading Biosciences Inc. JR is a shareholder in Molecular You Corp. JR reports receiving consulting fees from Cubist Pharmaceuticals (now owned by Merck; formerly Trius Pharmaceuticals; developing antibiotics), Ferring Pharmaceuticals (manufactures vasopressin and is developing selepressin), Grifols (sells albumin), La Jolla Pharmaceuticals (developing angiotensin II; JR chairs the DSMB of a trial of angiotensin II), CytoVale Inc. (developing a sepsis diagnostic), and Asahi Kesai Pharmaceuticals of America (AKPA) (developing recombinant thrombomodulin). JR reports having received grant support from Ferring Pharmaceuticals that was provided to and administered by UBC. MSH acknowledges the support from National Institute for Health Research Clinician Scientist Award (CS-2016-16-011). The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health. MS is a co-investigator of the UK Department of Health-funded LeoPARDs trial (levosimendan in septic shock), the ADAPT trial (comparing biomarkers) and the STRESS-L trial (beta-blockade in septic shock). He is Clinical PI of a multicenter sepsis biomarker study conducted by the UK Ministry of Defence (DSTL), and a multiplex biomarker panel study with Mologic UK. He has grants from MedCity to develop an antibiotic monitoring with Probe Scientific, and the Wellcome Trust/UK Department of Health to investigate a novel tissue perfusion monitor with Oxford Optronix. He is also Co-PI of a sub-study of the EU Innovative Medicines Initiative Combacte-Magnet Program. He sits on advisory boards for Biotest, Bayer, Bristol Myers Squibb, Deltex and La Jolla Pharmaceuticals. He chaired the Data Safety and Monitoring Committee for InflaRx’s Phase II trial of a novel C5a inhibitor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perner, A., Gordon, A.C., Angus, D.C. et al. The intensive care medicine research agenda on septic shock. Intensive Care Med 43, 1294–1305 (2017). https://doi.org/10.1007/s00134-017-4821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-017-4821-1

Keywords

Navigation