Skip to main content

Advertisement

Log in

Failure of renal biomarkers to predict worsening renal function in high-risk patients presenting with oliguria

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 17 January 2015

Abstract

Purpose

Oliguria is a common symptom in critically ill patients and puts patients in a high risk category for further worsening renal function (WRF). We performed this study to explore the predictive value of biomarkers to predict WRF in oliguric intensive care unit (ICU) patients.

Patients and methods

Single-center prospective observational study. ICU patients were included when they presented a first episode of oliguria. Plasma and urine biomarkers were measured: plasma and urine neutrophil gelatinase-associated lipocalin (pNGAL and uNGAL), urine α1-microglobulin, urine γ-glutamyl transferase, urine indices of tubular function, cystatin C, C terminal fragment of pro-arginine vasopressin (CT-ProAVP), and proadrenomedullin (MR-ProADM).

Results

One hundred eleven patients formed the cohort, of whom 43 had worsening renal function. Simplified Acute Physiology Score (SAPS) II was 41 (31–51). WRF was associated with increased mortality (hazard ratio 8.65 [95 % confidence interval (CI) 3.0–24.9], p = 0.0002). pNGAL, MR-ProADM, and cystatin C had the best odds ratio and area under the receiver-operating characteristic curve (AUC-ROC: 0.83 [0.75–0.9], 0.82 [0.71–0.91], and 0.83 [0.74–0.90]), but not different from serum creatinine (Screat, 0.80 [0.70–0.88]). A clinical model that included age, sepsis, SAPS II, and Screat had AUC-ROC of 0.79 [0.69–0.87]; inclusion of pNGAL increased the AUC-ROC to 0.86 (p = 0.03). The category-free net reclassification index improved with pNGAL (total net reclassification index for events to higher risk 61 % and nonevents to lower 82 %).

Conclusions

All episodes of oliguria do not carry the same risk. No biomarker further improved prediction of WRF compared with Screat in this selected cohort of patients at increased risk defined by oliguria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent J-L, Moreno R, Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228. doi:10.1007/s00134-012-2769-8

    Article  CAS  PubMed  Google Scholar 

  2. Hoste EAJ, De Corte W (2013) Implementing the kidney disease: improving global outcomes/acute kidney injury guidelines in ICU patients. Curr Opin Crit Care 19:544–553. doi:10.1097/MCC.0000000000000039

    PubMed  Google Scholar 

  3. Macedo E, Malhotra R, Bouchard J, Wynn SK, Mehta RL (2011) Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int 80:760–767. doi:10.1038/ki.2011.150

    Article  CAS  PubMed  Google Scholar 

  4. Payen D, Legrand M (2011) Can we identify prerenal physiology and does it matter? Contrib Nephrol 174:22–32. doi:10.1159/000329230

    Article  PubMed  Google Scholar 

  5. Mandelbaum T, Lee J, Scott DJ, Mark RG, Malhotra A, Howell MD, Talmor D (2013) Empirical relationships among oliguria, creatinine, mortality, and renal replacement therapy in the critically ill. Intensive Care Med 39:414–419. doi:10.1007/s00134-012-2767-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cruz DN, Bagshaw SM, Ronco C, Ricci Z (2010) Acute kidney injury: classification and staging. Contrib Nephrol 164:24–32. doi:10.1159/000313717

    Article  PubMed  Google Scholar 

  7. Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR, Chawla LS, Wheeler DS, Goldstein SL (2014) Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int 85:659–667. doi:10.1038/ki.2013.349

    Article  PubMed  Google Scholar 

  8. Legrand M, Payen D (2013) Case scenario: hemodynamic management of post-operative acute kidney injury. Anesthesiology 118(6):1446–1454. doi:10.1097/ALN.0b013e3182923e8a

    Article  PubMed  Google Scholar 

  9. Legrand M, Januzzi JL Jr, Mebazaa A (2013) Critical research on biomarkers: what’s new? Intensive Care Med 39:1824–1828. doi:10.1007/s00134-013-3008-7

    Article  PubMed  Google Scholar 

  10. Schneider AG, Bellomo R (2013) Acute kidney injury: new studies. Intensive Care Med 39:569–571. doi:10.1007/s00134-013-2860-9

    Article  PubMed  Google Scholar 

  11. Parr SK, Clark AJ, Bian A, Shintani AK, Wickersham NE, Ware LB, Ikizler TA, Siew ED (2014) Urinary L-FABP predicts poor outcomes in critically ill patients with early acute kidney injury. Kidney Int. doi:10.1038/ki.2014.301

    PubMed  Google Scholar 

  12. Legrand M, Payen D (2011) Understanding urine output in critically ill patients. Ann Intensive Care 1:13. doi:10.1186/2110-5820-1-13

    Article  PubMed Central  PubMed  Google Scholar 

  13. Farge D, De la Coussaye JE, Beloucif S, Fratacci MD, Payen DM (1995) Interactions between hemodynamic and hormonal modifications during PEEP-induced antidiuresis and antinatriuresis. Chest 107:1095–1100

    Article  CAS  PubMed  Google Scholar 

  14. Matot I, Paskaleva R, Eid L, Cohen K, Khalaileh A, Elazary R, Keidar A (2012) Effect of the volume of fluids administered on intraoperative oliguria in laparoscopic bariatric surgery: a randomized controlled trial. Arch Surg 147:228–234. doi:10.1001/archsurg.2011.308

    Article  PubMed  Google Scholar 

  15. Macedo E, Malhotra R, Claure-Del Granado R, Fedullo P, Mehta RL (2011) Defining urine output criterion for acute kidney injury in critically ill patients. Nephrol Dial Transplant 26:509–515. doi:10.1093/ndt/gfq332

    Article  PubMed Central  PubMed  Google Scholar 

  16. Prowle JR, Liu Y-L, Licari E, Bagshaw SM, Egi M, Haase M, Haase-Fielitz A, Kellum JA, Cruz D, Ronco C, Tsutsui K, Uchino S, Bellomo R (2011) Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care 15:R172. doi:10.1186/cc10318

    Article  PubMed Central  PubMed  Google Scholar 

  17. Glassford NJ, Schneider AG, Xu S, Eastwood GM, Young H, Peck L, Venge P, Bellomo R (2013) The nature and discriminatory value of urinary neutrophil gelatinase-associated lipocalin in critically ill patients at risk of acute kidney injury. Intensive Care Med 39:1714–1724. doi:10.1007/s00134-013-3040-7

    Article  CAS  PubMed  Google Scholar 

  18. Valette X, Savary B, Nowoczyn M, Daubin C, Pottier V, Terzi N, Seguin A, Fradin S, Charbonneau P, Hanouz JL, du Cheyron D (2013) Accuracy of plasma neutrophil gelatinase-associated lipocalin in the early diagnosis of contrast-induced acute kidney injury in critical illness. Intensive Care Med 39:857–865. doi:10.1007/s00134-013-2826-y

    Article  CAS  PubMed  Google Scholar 

  19. Nejat M, Pickering JW, Devarajan P, Bonventre JV, Edelstein CL, Walker RJ, Endre ZH (2012) Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney Int 81:1254–1262. doi:10.1038/ki.2012.23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cruz DN, de Cal M, Garzotto F, Perazella MA, Lentini P, Corradi V, Piccinni P, Ronco C (2010) Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med 36:444–451. doi:10.1007/s00134-009-1711-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pipili C, Ioannidou S, Tripodaki ES, Parisi M, Douka E, Vasileiadis I, Joannidis M, Nanas S (2014) Prediction of the renal replacement therapy requirement in mechanically ventilated critically ill patients by combining biomarkers for glomerular filtration and tubular damage. J Crit Care 29:692.e7–692.e13. doi:.1016/j.jcrc.2014.02.011

  22. Albert M, Losser M-R, Hayon D, Faivre V, Payen D (2004) Systemic and renal macro- and microcirculatory responses to arginine vasopressin in endotoxic rabbits. Crit Care Med 32:1891–1898

    Article  CAS  PubMed  Google Scholar 

  23. Boertien WE, Meijer E, Zittema D, van Dijk MA, Rabelink TJ, Breuning MH, Struck J, Bakker SJL, Peters DJM, de Jong PE, Gansevoort RT (2012) Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 27:4131–4137. doi:10.1093/ndt/gfs070

    Article  CAS  PubMed  Google Scholar 

  24. Meijer E, Bakker SJL, de Jong PE, Homan van der Heide JJ, van Son WJ, Struck J, Lems SPM, Gansevoort RT (2009) Copeptin, a surrogate marker of vasopressin, is associated with accelerated renal function decline in renal transplant recipients. Transplantation 88:561–567. doi:10.1097/TP.0b013e3181b11ae4

    Article  CAS  PubMed  Google Scholar 

  25. Morgenthaler NG (2010) Copeptin: a biomarker of cardiovascular and renal function. Congest Heart Fail 16:S37–S44. doi:10.1111/j.1751-7133.2010.00177.x

    Article  CAS  PubMed  Google Scholar 

  26. Nishikimi T (2007) Adrenomedullin in the kidney-renal physiological and pathophysiological roles. Curr Med Chem 14:1689–1699

    Article  CAS  PubMed  Google Scholar 

  27. Wagner K, Wachter U, Vogt JA, Scheuerle A, McCook O, Weber S, Gröger M, Stahl B, Georgieff M, Möller P, Bergmann A, Hein F, Calzia E, Radermacher P, Wagner F (2013) Adrenomedullin binding improves catecholamine responsiveness and kidney function in resuscitated murine septic shock. Intensive Care Med Exp 1:2

    Article  Google Scholar 

  28. Pickering JW, Ralib AM, Endre ZH (2013) Combining creatinine and volume kinetics identifies missed cases of acute kidney injury following cardiac arrest. Crit Care 17:R7. doi:10.1186/cc1193

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from institutional grants from Université Paris VII and from the Ministère de la Recherche plan quadriennal EA 3509. Assays for Ct-ProAVP and MR-ProADM were provided by Thermo Fisher.

Author contributions

All co-authors contributed to the manuscript and approved the submission.

Prior publication or overlapping content

Neither this manuscript nor any significant part of it is under consideration for publication elsewhere or published or available elsewhere in a manner that could be construed as a prior or duplicate publication of the same or substantially overlapping content.

Conflicts of interest

Matthieu Legrand received lectures fees from Alere. All other authors have no conflict of interest related to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Legrand.

Additional information

Take-home message: Although oliguria is used to detect acute kidney injury, only a small proportion of oliguric patients subsequently show a sustained decrease of glomerular filtration rate. In this study, biomarkers of renal function injury and systemic stress could substantially improve our ability to detect oliguric patients at risk of poor renal outcome when compared with clinical presentation.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legrand, M., Jacquemod, A., Gayat, E. et al. Failure of renal biomarkers to predict worsening renal function in high-risk patients presenting with oliguria. Intensive Care Med 41, 68–76 (2015). https://doi.org/10.1007/s00134-014-3566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-014-3566-3

Keywords

Navigation