Skip to main content
Log in

In vivo effects on human skeletal muscle oxygen delivery and metabolism of cardiopulmonary bypass and perioperative hemodilution

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

To investigate the in vivo effects of cardiopulmonary bypass (CPB) and perioperative hemodilution on human skeletal muscle oxygen delivery and metabolism and to determine the dilution state at which these effects arise.

Methods

We conducted this observational study in adult patients undergoing CPB surgery. Microcirculatory data were obtained by near-infrared spectroscopy from the brachioradial muscle in 20 consecutive patients undergoing hemodilution for CPB. Outcome variables included tissue oxy- and deoxyhemoglobin concentration ([HbO2], [HHb]), oxygen content, blood flow, oxygen delivery, and oxygen consumption.

Results

Although CPB left tissue blood flow and oxygen delivery unchanged, both microcirculatory variables correlated significantly and inversely with hematocrit (Hct) (r = −0.39, p < 0.001; r = −0.50, p < 0.001). CPB also left muscle oxygen consumption (mVO2) unchanged and this variable correlated with the tissue hemoglobin concentration and tissue oxygen delivery (r = 0.40, p = 0.001; r = 0.35, p = 0.005). During CPB most of the systemic cardiovascular variables remained unchanged. Conversely at Hct lower than 30%, mean arterial pressure and pH decreased and lactate values increased twofold, whereas microvascular blood volume and oxygen delivery increased. At Hct lower than 20% blood flow and oxygen delivery increased, whereas hemoglobin and oxygen content variables decreased.

Conclusions

CPB leaves skeletal muscle oxygen delivery and metabolism as measured by near-infrared spectroscopy unchanged. The only factor that correlates directly with the oxygen content variables and inversely with blood flow, and induces significant changes in tissue hemoglobin content and oxygen delivery, is hemodilution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Patila T, Kukkonen S, Vento A, Pettila V, Suojaranta-Ylinen R (2006) Relation of the sequential organ failure assessment score to morbidity and mortality after cardiac surgery. Ann Thorac Surg 82:2072–2078

    Article  PubMed  Google Scholar 

  2. Bauer A, Kofler S, Thiel M, Eifert S, Christ F (2007) Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging. Anesthesiology 107:939–945

    Article  PubMed  Google Scholar 

  3. Doerschug KC, Delsing AS, Schmidt GA, Haynes WG (2007) Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol 293:H1065–H1071

    Article  PubMed  CAS  Google Scholar 

  4. den Uil CA, Lagrand WK, Spronk PE, Spronk PE, van Domburg RT, Hofland J, Lüthen C, Brugts JJ, van der Ent M, Simoons ML (2008) Impaired sublingual microvascular perfusion during surgery with cardiopulmonary bypass: a pilot study. J Thorac Cardiovasc Surg 136:129–134

    Article  Google Scholar 

  5. De Backer D, Dubois MJ, Schmartz D, Schmartz D, Marc Koch, Anne Ducart, Luc Barvais, Vincent JL (2009) Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia. Ann Thorac Surg 88:1396–1403

    Article  PubMed  Google Scholar 

  6. Riddington DW, Venkatesh B, Boivin CM, Bonser RS, Elliott TSJ, Marshall T, Mountford PJ, Bion JF (1996) Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA 275:1007–1012

    Article  PubMed  CAS  Google Scholar 

  7. Kirklin JW, Barrat-Boyes BG (1993) Hypothermia, circulatory arrest, and cardiopulmonary bypass. In: Cardiac surgery. Churchill Livingstone, New York, pp 62–73

  8. Cooper MM, Elliott MJ (1994) Cardiopulmonary bypass in neonates, infants and young children. In: Jonas RA, Elliott MJ (eds) Haemodilution. Butterworth-Heinemann, Oxford, pp 82–89

    Google Scholar 

  9. Trzeciak S, McCoy JV, Phillip Dellinger R, Arnold RC, Rizzuto M, Abate NL, Shapiro NI, Parrillo JE, Hollenberg SM (2008) Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 34:2210–2217

    Article  PubMed  Google Scholar 

  10. De Blasi RA, Palmisani S, Alampi D, Mercieri M, Romano R, Collini S, Pinto G (2005) Microvascular dysfunction and skeletal muscle oxygenation assessed by phase-modulation near infrared spectroscopy in patients with septic shock. Intensive Care Med 31:1661–1668

    Article  PubMed  Google Scholar 

  11. De Blasi RA, Luciani R, Punzo G, Arcioni R, Romano R, Boezi M, Menè P (2009) Microcirculatory changes and skeletal muscle oxygenation measured at rest by non-infrared spectroscopy in patients with and without diabetes undergoing haemodialysis. Crit Care 13(5):S9–S19

    Article  PubMed  Google Scholar 

  12. Homma S, Eda H, Ogasawara S, Kagaya A (1996) Near infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity. J Appl Physiol 80:1279–1284

    PubMed  CAS  Google Scholar 

  13. Van Beekvelt MCP, Colier WNJM, Van Engelen BGM, Hopman MTE, Wevers RA, Oeseburg B (1998) Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near infrared spectroscopy. In: Benaron DA, Chance B, and Ferrari M (eds) Photon propagation in tissues. III. Proc SPIE 3194:133–144

  14. Yoshitani K, Kawaguchi M, Okuno T, Kanoda T, Ohnishi Y, Kuro M, Nishizawa M (2007) Measurements of optical pathlength using phase-resolved spectroscopy in patients undergoing cardiopulmonary bypass. Anesth Analg 104:341–346

    Article  PubMed  Google Scholar 

  15. Roques F, Michel P, Goldstone AR, Nashef SA (2003) The logistic EuroSCORE. Eur Heart J 24(9):882–883

    Article  Google Scholar 

  16. Fantini S, Franceschini MA, Maier JS, Walker SA, Barbieri B, Gratton E (1995) Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oxymetry. Opt Eng 34:32–42

    Article  CAS  Google Scholar 

  17. De Blasi RA, Ferrari M, Natali A, Conti G, Mega A, Gasparetto A (1994) Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy. J Appl Physiol 76:1388–1393

    PubMed  Google Scholar 

  18. Van Beekvelt M, Borghuis M, Van Engelen B, Wevers R, Collier W (2001) Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci (Lond) 101:21–28

    Article  Google Scholar 

  19. De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C, Vincent JL (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408

    Article  PubMed  Google Scholar 

  20. Gaehtgens P (1984) ‘Regulation’ of capillary haematocrit. Int J Microcirc Clin Exp 3(2):147–160

    PubMed  CAS  Google Scholar 

  21. Lindbom L, Mirhashemi S, Intaglietta M, Arfors KE (1988) Increase in capillary blood flow and relative haematocrit in rabbit skeletal muscle following acute normovolaemic anaemia. Acta Physiol Scand 134(4):503–512

    Article  PubMed  CAS  Google Scholar 

  22. Gonzàlez-Alonso J, Mortensen SP, Dawson EA, Secher NH, Damsgaard R (2006) Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin. J Physiol 572(1):295–305

    PubMed  Google Scholar 

  23. Wolff CB (2007) Normal cardiac output, oxygen delivery and oxygen extraction. Adv Exp Med Biol 599:169–182

    Article  PubMed  Google Scholar 

  24. Ellsworth ML (2004) Red blood cell-derived ATP as a regulator of skeletal muscle perfusion. Med Sci Sports Exerc 36:35–41

    Article  PubMed  CAS  Google Scholar 

  25. Singel DJ, Stamler JS (2005) Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohaemoglobin. Annu Rev Physiol 67:99–145

    Article  PubMed  CAS  Google Scholar 

  26. Wan S, LeClerc JL, Vincent JL (1997) Cytokine responses to cardiopulmonary bypass: lessons learned from cardiac transplantation. Ann Thorac Surg 63:269–276

    Article  PubMed  CAS  Google Scholar 

  27. Kamler M, Goedeke J, Pizanis N, Milekhin V, Schade FU, Jakob H (2005) In vivo effects of hypothermia on the microcirculation during extracorporeal circulation. Eur J Cardiothorac Surg 28:259–265

    Article  PubMed  Google Scholar 

  28. De Backer D, Ortiz JA, Salgado D (2010) Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care 16:250–254

    Article  PubMed  Google Scholar 

  29. Gaehtgens P (1984) ‘Regulation’ of capillary haematocrit. Int J Microcirc Clin Exp 3(2):147–160

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. De Blasi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Blasi, R.A., Tonelli, E., Arcioni, R. et al. In vivo effects on human skeletal muscle oxygen delivery and metabolism of cardiopulmonary bypass and perioperative hemodilution. Intensive Care Med 38, 413–421 (2012). https://doi.org/10.1007/s00134-011-2404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-011-2404-0

Keywords

Navigation