Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: The impact of fluid therapy on microcirculation and tissue oxygenation in hypovolemic patients: a review

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

This article was retracted on 13 May 2020

This article has been updated

Abstract

Purpose

An optimal volume replacement strategy aims to restore systemic hemodynamics with the ultimate goals of improving organ perfusion and microcirculation for sustaining adequate tissue oxygenation. This review presents the (patho)physiological basis of hypovolemia, microcirculation, and tissue oxygenation and presents a literature review on the effects of plasma substitutes on microperfusion and oxygenation in the clinical setting.

Methods

Literature review of the effects of fluid therapy on microcirculation and tissue oxygenation using PubMed search including original papers in English from 1988 to 2009.

Results

We identified a total of 14 articles dealing with the effects of different crystalloids and colloids on organ perfusion, microcirculation, and tissue oxygenation in patients. The results are divergent, but there is a general trend that colloids are superior to crystalloids in improving organ perfusion, microcirculation, and tissue oxygenation. Due to the limited number of studies and different study conditions, a meta-analysis on the effects of the volume replacement strategies on microcirculation is not possible.

Conclusions

Improving the microcirculation by volume replacement appears to be a promising issue when treating the critically ill. The growing insights from animal experiments have to be translated into the clinical setting to identify the optimal fluid regimen for correcting hypovolemia. New techniques for monitoring microcirculation at the bedside might provide such endpoints, although these have to be validated also in the clinical setting. Whether improved microperfusion and tissue oxygenation by fluid therapy will also improve patient outcomes will have to be proven by future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 13 May 2020

    The Editor-in-Chief has retracted this article [1] because a number of studies included in this review [2, 3, 4] (originally cited as references 24, 49, 51) have subsequently been retracted. This has rendered the content of the review unreliable.

References

  1. Edouard AR, Degrémont AC, Duranteau J, Pussard E, Berdeaux A, Samii K (1994) Heterogeneous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med 20:220–414

    Article  Google Scholar 

  2. Ince C (2004) Microcirculation in distress: a new resuscitation end point? Crit Care Med 32:1963–1964

    Article  PubMed  Google Scholar 

  3. Vollmar B, Menger MD (2004) Volume replacement and microhemodynamic changes in polytrauma. Langenbecks Arch Surg 389:485–491

    Article  PubMed  Google Scholar 

  4. Perret C, Feihl F (2000) Volume expansion during septic shock. Bull Acad Natl Med 184:1621–1629

    CAS  PubMed  Google Scholar 

  5. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831

    Article  PubMed  Google Scholar 

  6. Takala J, Jakob SM (2009) Shedding light on microcirculation. Intensive Care Med 35:394–396

    Article  PubMed  Google Scholar 

  7. Mythen MG, Salmon JB, Webb AR (1993) The rational administration of colloids. Blood Rev 7:223–228

    Article  CAS  PubMed  Google Scholar 

  8. Weil MH, Shubin H (1971) Proposed reclassification of states of shock. Adv Exp Med Biol 23:13–23

    Article  CAS  PubMed  Google Scholar 

  9. Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9(Suppl 4):S13–S19

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  11. Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1333–1337

    Article  PubMed  Google Scholar 

  12. Van Bommel J, Siegemund M, Henny CP, Ince C (2008) Heart, kidney, and intestine have different tolerances for anemia. Transl Res 151:110–117

    Article  PubMed  Google Scholar 

  13. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49:88–98

    Article  PubMed  Google Scholar 

  14. Van Bommel J, Henny CP, Trouwborst A, Ince C (2001) Microvascular shunting in severe normovolemic hemodilution. Anesthesiology 94:152–160

    Article  PubMed  Google Scholar 

  15. Wang P, Hauptman JG, Chaudry IH (1990) Hemorrhage produces depression in microvascular blood flow which persists despite fluid resuscitation. Circ Shock 32:307–318

    CAS  PubMed  Google Scholar 

  16. Ehrly AM, Landgraf H (1985) Influence of intravenous infusions of hydroxyethylstarch (HES) (MW 40,000 and 450,000) on the blood flow properties of healthy volunteers. Angiology 36:41–44

    Article  CAS  PubMed  Google Scholar 

  17. Boldt J (2007) The balanced concept of fluid resuscitation. Br J Anaesth 99:312–315

    Article  CAS  PubMed  Google Scholar 

  18. Powell-Tuck J, Gosling P, Lobo DN, Allison SP, Carlson GL, Gore M, Lewington AJ, Pearse RM, Mythen MG (2008) British consensus guidelines on intravenous fluid therapy for adult surgical patients. http://www.bapen.org.uk/pdfs/bapen_pubs/giftasup.pdf

  19. Kellum JA (2002) Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acid-base balance with Hextend compared with saline. Crit Care Med 30:300–305

    Article  PubMed  Google Scholar 

  20. Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90:1265–1270

    Article  CAS  PubMed  Google Scholar 

  21. Boldt J (2008) Saline versus balanced hydroxyethyl starch: does it matter? Curr Opin Anaesthesiol 21:679–683

    Article  PubMed  Google Scholar 

  22. Boldt J (2006) Do plasma substitutes have additional properties beyond correcting volume deficits? Shock 25:103–116

    Article  CAS  PubMed  Google Scholar 

  23. Kellum JA, Song M, Almasri E (2006) Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest 130:962–967

    Article  CAS  PubMed  Google Scholar 

  24. Boldt J, Suttner S, Brosch C, Lehmann A, Röhm K, Mengistu A (2009) The influence of a balanced volume replacement concept on inflammation, endothelial activation, and kidney integrity in elderly cardiac surgery patients. Intensive Care Med 35:462–470

    Article  PubMed  Google Scholar 

  25. Matharu NM, Butler LM, Rainger GE, Gosling P, Vohra RK, Nash GB (2008) Mechanisms of the anti-inflammatory effects of hydroxyethyl starch demonstrated in a flow-based model of neutrophil recruitment by endothelial cells. Crit Care Med 36:1536–1542

    Article  CAS  PubMed  Google Scholar 

  26. Kaplan SS, Park TS, Gonzales ER, Gidday JM (2000) Hydroxyethyl starch reduces leukocyte adherence and vascular injury in the newborn pig cerebral circulation after asphyxia. Stroke 31:2218–2223

    Article  CAS  PubMed  Google Scholar 

  27. Kupper S, Torge Mees S, Gassmann P, Brodde M, Kehrel B, Haier J (2007) Hydroxyethyl starch normalizes platelet and leukocyte adhesion within pulmonary microcirculation during LPS-induced endotoxemia. Shock 28:300–308

    Article  PubMed  CAS  Google Scholar 

  28. Inan N, Iltar S, Surer H, Yilmaz G, Alemdaroglu KB, Yazar MA, Basar H (2009) Effect of hydroxyethyl starch 130/0.4 on ischaemia/reperfusion in rabbit skeletal muscle. Eur J Anaesthesiol 26:160–165

    Article  CAS  PubMed  Google Scholar 

  29. Funk W, Baldinger V (1995) Microcirculatory perfusion during volume therapy. A comparative study using crystalloid or colloid in awake animals. Anesthesiology 82:975–982

    Article  CAS  PubMed  Google Scholar 

  30. Hoffmann JN, Vollmar B, Laschke MW, Inthorn D, Schildberg FW, Menger MD (2002) Hydroxyethyl starch (130 kD), but not crystalloid volume support, improves microcirculation during normotensive endotoxemia. Anesthesiology 97:460–470

    Article  CAS  PubMed  Google Scholar 

  31. Rubio-Gayosso I, Platts SH, Duling BR (2006) Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 290:H2247–H2256

    Article  CAS  PubMed  Google Scholar 

  32. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M (2008) A rational approach to perioperative fluid management. Anesthesiology 109:723–740

    Article  PubMed  Google Scholar 

  33. Constantinescu AA, Vink H, Spaan JA (2003) Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23:1541–1547

    Article  CAS  PubMed  Google Scholar 

  34. Mulivor AW, Lipowsky HH (2002) Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol Heart 283:H1282–H1291

    Article  CAS  Google Scholar 

  35. Rehm M, Zahler S, Lötsch M, Welsch U, Conzen P, Jacob M, Becker B (2004) Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology 100:1211–1223

    Article  CAS  PubMed  Google Scholar 

  36. Leslie SJ, Affolter J, Denvir MA, Webb DJ (2003) Validation of laser Doppler flowmetry coupled with intra-dermal injection for investigating effects of vasoactive agents on the skin microcirculation in man. Eur J Clin Pharmacol 59:99–102

    Article  PubMed  Google Scholar 

  37. Dubin A, Edul VSK, Ince C (2009) Determinants of tissue pCO2 in shock and sepsis: relationship to the microcirculation. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Heidelberg, pp 195–204

    Chapter  Google Scholar 

  38. Russell JA (1997) Gastric tonometry: does it work? Intensive Care Med 23:3–6

    Article  CAS  PubMed  Google Scholar 

  39. Vallet B, Lund N, Curtis S, Kelly D, Cain S (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76:793–800

    Article  CAS  PubMed  Google Scholar 

  40. Dubin A, Edul VS, Pozo MO, Murias G, Canullan CM, Martins EF, Ferrara G, Canales HS, Laporte M, Estenssoro E, Ince C (2008) Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit Care Med 36:535–542

    Article  CAS  PubMed  Google Scholar 

  41. Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL (2004) Sublingual capnometry tracks microcirculatory changes in septic patients. Crit Care Med 32:516–523

    Google Scholar 

  42. Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantification of severity of circulatory shock. Crit Care Med 27:1225–1229

    Article  CAS  PubMed  Google Scholar 

  43. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C (2007) Sidestream dark field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15:15101–15114

    Article  CAS  PubMed  Google Scholar 

  44. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212

    Article  CAS  PubMed  Google Scholar 

  45. Clark LC (1956) Monitor and control of blood and tissue oxygen tension. Trans Am Soc Artif Intern Org 2:41–46

    Google Scholar 

  46. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  CAS  PubMed  Google Scholar 

  47. Marik PE, Iglesias J, Maini B (1997) Gastric intramucosal pH changes after volume replacement with hydroxyethyl starch or crystalloid in patients undergoing elective abdominal aortic aneurysm repair. J Crit Care 12:51–55

    Article  CAS  PubMed  Google Scholar 

  48. Guo X, Xu Z, Ren H, Luo A, Huang Y, Ye T (2003) Effect of volume replacement with hydroxyethyl starch solution on splanchnic oxygenation in patients undergoing cytoreductive surgery for ovarian cancer. Chin Med J 116:996–1000

    PubMed  Google Scholar 

  49. Lang K, Boldt J, Suttner S, Haisch G (2001) Colloids versus crystalloids and tissue oxygen tension in patients undergoing major abdominal surgery. Anesth Analg 93:405–409

    CAS  PubMed  Google Scholar 

  50. Arkiliç C, Taguchi A, Sharma N, Ratnaraj J (2003) Supplemental perioperative fluid administration increases tissue oxygen pressure. Surgery 133:49–55

    Article  PubMed  Google Scholar 

  51. Boldt J, Heesen M, Muller M, Pabsdorf M, Hempelmann G (1996) The effects of albumin versus hydroxyethyl starch solution on cardiorespiratory and circulatory variables in critically ill patients. Anesth Analg 83:254–261

    Article  CAS  PubMed  Google Scholar 

  52. Boldt J, Zickmann B, Herold C, Ballesteros M, Dapper F, Hempelmann G (1991) Influence of hypertonic volume replacement on the microcirculation in cardiac surgery. Br J Anaesth 67:595–602

    Article  CAS  PubMed  Google Scholar 

  53. Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Ann Surg 130:423–429

    CAS  Google Scholar 

  54. Asfar P, Kerkeni N, Labadie F, Gouello JP, Brenet O, Alquier P (2000) Assessment of hemodynamic and gastric mucosal acidosis with modified fluid gelatin versus hydroxyethyl starch: a prospective, randomized study. Intensive Care Med 26:1282–1287

    Article  CAS  PubMed  Google Scholar 

  55. Forrest DM, Baigorri F, Chittock DR, Spinelli JJ, Rusel JA (2000) Volume expansion using pentastarch does not change gastric-arterial PCO2 gradient or gastric intramucosal pHi in patients who have sepsis syndrome. Crit Care Med 28:2254–2258

    Article  CAS  PubMed  Google Scholar 

  56. Rittoo D, Gosling P, Bonnici C, Burnley S, Millns P, Simms MH, Smith SR, Vohra RK (2002) Splanchnic oxygenation in patients undergoing abdominal aortic aneurysm repair and volume expansion with eloHAES. Cardiovasc Surg 10:128–133

    Article  CAS  PubMed  Google Scholar 

  57. Hofmann D, Thuemer O, Schelenz C, van Hoot N, Sakka SG (2005) Increasing cardiac output by fluid loading: effects on indocyanine green plasma disappearance rate and splanchnic microcirculation. Acta Anaesthesiol Scand 49:1280–1286

    Article  CAS  PubMed  Google Scholar 

  58. Mahmood A, Gosling P, Barclay R, Kilvington F, Vohra R (2009) Splanchnic microcirculation protection by hydroxyethyl starches during abdominal aortic aneurysm surgery. Eur J Vasc Endovasc Surg 37:319–325

    Article  CAS  PubMed  Google Scholar 

  59. Wilkes NJ, Woolf R, Mutch M, Mallett SV, Peachey T, Stephens R, Mythen MG (2001) The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg 93:811–816

    Article  CAS  PubMed  Google Scholar 

  60. Kreimeier U, Bruckner UB, Niemczyk S, Messmer K (1990) Hyperosmotic saline dextran for resuscitation from traumatic-hemorrhagic hypotension: effect on regional blood flow. Circ Shock 32:83–99

    CAS  PubMed  Google Scholar 

  61. Behrman SW, Fabian TC, Kudsk KA, Proctor KG (1991) Microcirculatory flow changes after initial resuscitation of hemorrhagic shock with 7.5% hypertonic saline/6% dextran 70. J Trauma 31:589–598

    Article  CAS  PubMed  Google Scholar 

  62. Al-Rawi PG, Zygun D, Tseng MY, Hutchinson PJ, Matta BF, Kirkpatrick PJ (2005) Cerebral blood flow augmentation in patients with severe subarachnoid haemorrhage. Acta Neurochir (Suppl) 95:123–127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the talents of Darryl Milstein who produced Figs. 1 and 2 in this paper. This study was supported only by an institutional grant.

Conflict of interest statement

Boldt and his institution have received funding from B. Braun (Germany); Fresenius-Kabi (Germany); Serumwerke Bernburg (Germany); Baxter (Europe). Ince holds a patent on SDF imaging, has stock in Microvision Medical, and has received educational grants from Hutchinison Technology, Baxter, Novartis, and Eli Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Boldt.

Additional information

The Editor-in-Chief has retracted this article [1] because a number of studies included in this review [2, 3, 4] (originally cited as references 24, 49, 51) have subsequently been retracted. This has rendered the content of the review as unreliable.

Author Joachim Boldt has not responded to any correspondence from the publisher about this retraction. Author Can Ince agrees to the retraction.

[1] Boldt, J., Ince, C. The impact of fluid therapy on microcirculation and tissue oxygenation in hypovolemic patients: a review. Intensive Care Med 36, 1299–1308 (2010). https://doi.org/10.1007/s00134-010-1912-7

[2] Boldt J, Suttner S, Brosch C, Lehmann A, Röhm K, Mengistu A (2009) The influence of a balanced volume replacement concept on inflammation, endothelial activation, and kidney integrity in elderly cardiac surgery patients. Intensive Care Med 35:462–470

[3] Lang K, Boldt J, Suttner S, Haisch G (2001) Colloids versus crystalloids and tissue oxygen tension in patients undergoing major abdominal surgery. Anesth Analg 93:405–409

[4] Boldt J, Heesen M, Muller M, Pabsdorf M, Hempelmann G (1996) The effects of albumin versus hydroxyethyl starch solution on cardiorespiratory and circulatory variables in critically ill patients. Anesth Analg 83:254–261

About this article

Cite this article

Boldt, J., Ince, C. RETRACTED ARTICLE: The impact of fluid therapy on microcirculation and tissue oxygenation in hypovolemic patients: a review. Intensive Care Med 36, 1299–1308 (2010). https://doi.org/10.1007/s00134-010-1912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-010-1912-7

Keywords

Navigation