Skip to main content
Log in

Effect of activated protein C on pulmonary blood flow and cytokine production in experimental acute lung injury

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

In acute lung injury (ALI) activated protein C (APC) may reopen occluded lung vessels and minimize lung inflammation. We aimed at assessing the effect of APC on regional lung perfusion, aerated lung volume, cytokine production and oxygenation in experimental ALI.

Design and setting

Prospective, controlled study in an imaging facility.

Participants

Pigs tracheotomized and mechanically ventilated.

Intervention

Pigs were randomly given intravenously APC (n = 8) or saline (n = 8). Thirty minutes later, ALI was induced by injecting oleic acid.

Measurements and results

Lung perfusion and aerated lung volume measured with positron emission tomography, plasma cytokines and arterial blood gas were determined just before ALI and 110 and 290 min thereafter. Lung cytokines were measured at the end of the experiment. PaO2 under FIO2 1 was significantly lower in the APC group before lung injury (473 ± 129 vs. 578 ± 54 mmHg) and 110 min (342 ± 138 vs. 446 ± 103 mmHg) and 290 min (303 ± 171 vs. 547 ± 54 mmHg) thereafter (p < 0.05). Lung perfusion nonsignificantly tended to redistribute towards dorsal lung regions with APC. Total aerated lung volume was not different between APC and control before ALI (10.0 ± 1.5 vs. 11.0 ± 2.5 ml/kg) (p > 0.05) or thereafter. Plasma IL-6 and IL-8 at 110 min were greater with APC (p < 0.05).

Conclusions

In contrast to studies using other models, pretreatment with APC was associated with worsening oxygenation in the present investigation. This might be due to ventilation–perfusion mismatch, with more perfusion to dependent nonaerated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zapol WM, Jones R (1987) Vascular components of ARDS: clinical pulmonary hemodynamics and morphology. Am Rev Respir Dis 136:471–474

    PubMed  CAS  Google Scholar 

  2. Greene R (1986) Pulmonary vascular obstruction in the adult respiratory distress syndrome. J Thorac Imaging 1:31–38

    Article  PubMed  CAS  Google Scholar 

  3. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA (2002) Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 346:1281–1286

    Article  PubMed  Google Scholar 

  4. Gunther A, Mosavi P, Heinemann S, Ruppert C, Muth H, Markart P, Grimminger F, Walmrath D, Temmesfeld-Wollbruck B, Seeger W (2000) Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia. Comparison with the acute respiratory distress syndrome. Am J Respir Crit Care Med 161:454–462

    PubMed  CAS  Google Scholar 

  5. Levi M, Schultz MJ, Rijneveld AW, Van der Poll T (2003) Bronchoalveolar coagulation and fibrinolysis in endotoxemia and pneumonia. Crit Care Med 31:S238 –S242

    Article  PubMed  CAS  Google Scholar 

  6. Fuchs-Buder T, de Moerloose P, Ricou B, Reber G, Vifian C, Nicod L, Romand JA, Suter PM (1996) Time course of procoagulant activity and D dimer in bronchoalveolar fluid of patients at risk for or with acute respiratory distress syndrome. Am J Respir Crit Care Med 153:163–167

    PubMed  CAS  Google Scholar 

  7. Idell S, Gonzalez K, Bradford H, MacArthur CK, Fein AM, Maunder RJ, Garcia JG, Griffith DE, Weiland J, Martin TR (1987) Pro-coagulant activity in bronchoalveolar lavage in the adult respiratory distress syndrome. Am Rev Respir Dis 136:1466–1474

    PubMed  CAS  Google Scholar 

  8. Idell S (2001) Anticoagulants for acute respiratory distress syndrome. Can they work? Am J Respir Crit Care Med 164:517–520

    PubMed  CAS  Google Scholar 

  9. Ware LB, Fang X, Matthay MA (2003) Protein C and thrombomodulin in human acute lung injury. Am J Physiol Lung Cell Mol Physiol 285:L514–521

    PubMed  CAS  Google Scholar 

  10. Murakami K, Okajima K, Uchiba M, John M, Nakagaki H, Takatsuki K (1997) Activated protein C prevents LPS-induced pulmonary vascular injury by inhibiting cytokine production. Am J Physiol 272:L197–L202

    PubMed  CAS  Google Scholar 

  11. Yoshikawa A, Kaido T, Seto S (2000) Activated protein C prevents multiple organ injury following extensive hepatectomy in cirrhotic rats. J Hepatol 33:953–960

    Article  PubMed  CAS  Google Scholar 

  12. Dhainault JF, Laterre PF, Janes JM, Bernard GM, Artigas A, Bakker J, Riess H, Basson BR, Charpentier J, Utterback BG, Vincent JL (2003) Drotrecogin alpha (activated) in the treatment of severe sepsis patients with multiple-organ dysfunction: data from the Prowess trial. Intensive Care Med 29:894–903

    Google Scholar 

  13. Vincent JL, Angus DC, Artigas A, Kalil A, Basson BR, Jamal HH, Johnson III G, Bernard G (2003) Effects of drotrecogin alfa (activated) on organ dysfunction in the PROWESS trial. Crit Care Med 31:834–840

    Article  PubMed  CAS  Google Scholar 

  14. Malbrain ML, Chiumello D, Pelosi P, Bihari D, Innes R, Ranieri VM, Del Turco M, Wilmer A, Brienza N, Malcangi V, Cohen J, Japiassu A, De Keulenaer BL, Daelemans R, Jacquet L, Laterre PF, Frank G, de Souza P, Cesana B, Gattinoni L (2005) Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit Care Med 33:315–322

    Article  PubMed  Google Scholar 

  15. Jian M, Koizumi T, Tsushima K, Fujimoto K, Kubo K (2005) Activated protein C attenuates acid-aspiration lung injury in rats. Pulm Pharmacol Ther 18:291–296

    Article  PubMed  CAS  Google Scholar 

  16. Richard JC, Decailliot F, Janier M, Annat G, Guerin C (2002) Effects of positive end-expiratory pressure and body position on pulmonary blood flow redistribution in mechanically ventilated normal pigs. Chest 122:998–1005

    Article  PubMed  Google Scholar 

  17. Richard JC, Janier M, Lavenne F, Tourvieille C, Le Bars D, Costes N, Gimenez G, Guerin C (2005) Assessment of lung volume and alveolar ventilation using 13N-N2 washin–washout and positron emission tomography. J Nucl Med 46:1375–1383

    PubMed  Google Scholar 

  18. Novick RJ, Gilpin AA, Gehman KE, Ali IS, Veldhuizen RA, Duplan J, Denning L, Possmayer F, Bjarneson D, Lewis JF (1997) Mitigation of injury in canine lung grafts by exogenous surfactant therapy. J Thorac Cardiovasc Surg 113:342–353

    Article  PubMed  CAS  Google Scholar 

  19. Richard JC, Janier M, Decailliot F, Le Bars D, Lavenne F, Berthier V, Lionnet M, Cinotti L, Annat G, Guerin C (2002) Comparison of PET with radioactive microspheres to assess pulmonary blood flow. J Nucl Med 43:1063–1071

    PubMed  Google Scholar 

  20. Gust R, Kozlowski J, Stephenson AH, Schuster DP (1998) Synergistic hemodynamic effects of low-dose endotoxin and acute lung injury. Am J Respir Crit Care Med 157:1919–1926

    PubMed  CAS  Google Scholar 

  21. Gust R, McCarthy TJ, Kozlowski J, Stephenson AH, Schuster DP (1999) Response to inhaled nitric oxide in acute lung injury depends on distribution of pulmonary blood flow prior to its administration. Am J Respir Crit Care Med 159:563–570

    PubMed  CAS  Google Scholar 

  22. Maybauer MO, Maybauer DM, Fraser JF, Traber LD, Westphal M, Enkhbaatar P, Cox RA, Huda R, Hawkins HK, Morita N, Murakami K, Mizutani A, Herndon DN, Traber DL (2006) Recombinant human activated protein C improves pulmonary function in ovine acute lung injury resulting from smoke inhalation and sepsis. Crit Care Med 34:2432–2438

    Article  PubMed  CAS  Google Scholar 

  23. Murakami K, Okajima K, Uchiba M, Johno M, Nakagaki T, Okabe H, Takatsuki K (1996) Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats. Blood 87:642–647

    PubMed  CAS  Google Scholar 

  24. Chen DL, Schuster DP (2004) Positron emission tomography with [18F]fluorodeoxyglucose to evaluate neutrophil kinetics during acute lung injury. Am J Physiol Lung Cell Mol Physiol 286:L834–840

    Article  PubMed  CAS  Google Scholar 

  25. Robriquet L, Collet F, Tournoys A, Prangère T, Nevière R, Fourrier F, Guery BP (2006) Intravenous administration of activated protein C in Pseudomonas-induced lung injury: impact on lung fluid balance and the inflammatory response. Respir Res 7:1–10

    Article  CAS  Google Scholar 

  26. Rosenthal C, Caronia C, Quinn C, Lugo N, Sagy M (1998) A comparison among animal models of acute lung injury. Crit Care Med 26:912–916

    Article  PubMed  CAS  Google Scholar 

  27. Hooper WC, Phillips DJ, Renshaw MA, Evatt BL, Benson JM (1998) The up-regulation of IL-6 and IL-8 in human endothelial cells by activated protein C. J Immunol 161:2567–2573

    PubMed  CAS  Google Scholar 

  28. Czeslick EG, Nestler F, Simm A, Struppert A, Sablotzki A (2005) Drotrecogin alfa (activated) does not affect intracellular production of interleukin-6 and tumor necrosis factor-alpha in endotoxin-stimulated human monocytes. Anesth Analg 101:1805–1808

    Article  PubMed  CAS  Google Scholar 

  29. Brueckmann M, Hoffmann U, Dvortsak E, Lang S, Kaden JJ, Borgreffe M, Haase KK (2004) Drotrecogin alfa (activated) inhibits NF-kappa B activation and MIP-1-alpha relase from isolated mononuclear cells of patients with severe sepsis. Inflamm Res 53:528–533

    Article  PubMed  CAS  Google Scholar 

  30. Brueckmann M, Hoffman U, De Rossi L, Weiler HM, Liebe V, Lang S, Kaden JJ, Borgreffe M, Haase KK, Huhle G (2004) Activated protein C inhibits the release of macrophage inflammatory protein-1-alpha from THP-1 cells and from human monocytes. Cytokine 7:106–113

    Article  CAS  Google Scholar 

  31. Beilman G (1995) Pathogenesis of oleic acid-induced lung injury in the rat: distribution of oleic acid during injury and early endothelial cell changes. Lipids 30:817–823

    Article  PubMed  CAS  Google Scholar 

  32. Rezaiguia S, Garat C, Delclaux C, Meignan M, Fleury J, Legrand P, Matthay MA, Jayr C (1997) Acute bacterial pneumonia in rats increases alveolar epithelial fluid clearance by a tumor necrosis factor-alpha-dependent mechanism. J Clin Invest 99:325–335

    Article  PubMed  CAS  Google Scholar 

  33. Schuster DP (1994) ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med 149:245–260

    PubMed  CAS  Google Scholar 

  34. Richard JC, Janier M, Decailliot F, Le Bars D, Lavenne F, Berthier V, Lionnet M, Cinotti L, Annat G, Guerin C (2002) Comparison of PET with radioactive microspheres to assess pulmonary blood flow. J Nucl Med 43:1063–1071

    PubMed  Google Scholar 

  35. Richard JC, Janier M, Lavenne F, Berthier V, Lebars D, Annat G, Decailliot F, Guerin C (2002) Effect of position, nitric oxide, and almitrine on lung perfusion in a porcine model of acute lung injury. J Appl Physiol 93:2181–2191

    PubMed  CAS  Google Scholar 

  36. Idell S, Peterson BT, Gonzalez KK, Gray LD, Bach R, McLarty J, Fair DS (1988) Local abnormalities of coagulation and fibrinolysis and alveolar fibrin deposition in sheep with oleic acid-induced lung injury. Am Rev Respir Dis 138:1282–1294

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study received a grant of €25,679.70 from Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA. Xigris® was provided by Lilly. Fabienne Bregeon was supported by a grant from the Laboratoires d'Explorations Fonctionnelles Respiratoires, Hôpital Nord, Marseille, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Guerin.

Additional information

This article is discussed in the editorial available at: http://dx.doi.org/10.1007/s00134-007-0783-z.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, JC., Bregeon, F., Leray, V. et al. Effect of activated protein C on pulmonary blood flow and cytokine production in experimental acute lung injury. Intensive Care Med 33, 2199–2206 (2007). https://doi.org/10.1007/s00134-007-0782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0782-0

Keywords

Navigation