Skip to main content
Log in

Pathogenesis of oleic acid-induced lung injury in the rat: Distribution of oleic acid during injury and early endothelial cell changes

  • Articles
  • Published:
Lipids

Abstract

Oleic acid-induced lung injury, a well-described laboratory model for acute pulmonary injury in the rat and other species, causes morphologic and cellular changes similar to human adult respiratory distress syndrome (ARDS). Experiments were performed to test the hypothesis that the initial event of oleic acid lung injury is damage of the pulmonary vascular endothelium by oleic acid, with subsequent pulmonary damage and inflammation. Oleic acid levels were followed in the lung and other tissues by measuring accumulation of14C-oleic acid; the direct effects of oleic acid and other fatty acids on rat endothelial cells, alveolar type II cells, and hepatocytes in culture were determined. Lung tissue from treated rats was also examined by light and electron microscopy for evidence of endothelial cell damage. At 30 min after injury, oleic acid reached high concentrations in lung tissue as demonstrated by presence of radiolabel (3.24×10−6 moles per gram of tissue), with counts in the lung nearly an order of magnitude greater than in any other organ measured. Oleic acid was present in the lung mostly as free fatty acid (85%), and was also present in the alveolar fluid supernatans, rather than being cell-associated (1.7×10−7 moles vs. 1.1×10−8 moles at 30 min). Oleic acid was toxic to endothelial cells after one minute of exposure at concentrations of 5×10−4M and above. Electron microscopy showed endothelial cell changes as early as 10 min after induction of injuryin vivo, including the presence of endothelial cell blebbing. The results of these studies suggest that the initial event in oleic acid lung injury is damage to the pulmonary vascular endothelial cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARDS:

Adult respiratory distress syndrome

ATH:

alveolar type II cells

BAL:

bronchoalveolar lavage

FBS:

fetal bovine serum

HBSS:

Hanks' Balanced Salt Solution

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

OA:

oleic acid

PBS:

phosphate-buffered saline

TNF-α:

tumor necrosis factor-α

References

  1. Ashbaugh, D.G., Bigelow, D.B., Petty, T.L., and Levine, B.E. (1967) Acute Respiratory Distress in Adults,Lancet 2, 319–323.

    Article  PubMed  CAS  Google Scholar 

  2. Dickey, B.F., Thrall, R.S., McCormick, J.R., and Ward, P.A. (1981) Oleic Acid Lung Induced Lung Injury in the Rat: Failure of Indomethacin Treatment or Complement Depletion to Ablate Lung Injury,Am. J. Pathol. 103, 376–383.

    PubMed  CAS  Google Scholar 

  3. Derks, C.M., and Jacobovitz-Derks, D. (1977) Embolic Pneumopathy Induced by Oleic Acid,Am. J. Pathol. 87, 143–158.

    PubMed  CAS  Google Scholar 

  4. Andreasson, S., Bylock, A., Smith, L., and Risberg, B. (1986) Extravascular Lung Water Measurement in Septic Sheep,J. Surgical Res. 40, 95–104.

    Article  CAS  Google Scholar 

  5. Shiue, S.T., and Thrall, R.S. (1991) Effect of Corticosteroid Therapy on the Acute Injury and Recovery Stage of Oleic Acid Induced Lung Injury in the Rat,Exp. Lung Res. 17, 629–638.

    PubMed  CAS  Google Scholar 

  6. Beilman, G.J., Clancy, J., and Olson, D.E. (1988) Natural Killer (NK) and Large Granular Lymphocyte (LGL) Response in Oleic Acid-Induced Lung Injury,Am. Soc. Exp. Bio. Proc. 2, A459.

    Google Scholar 

  7. Schuster, D.P. (1994) ARDS: Clinical Lessons from the Oleic Acid Model of Lung Injury,Am. J. Respir. Crit. Care. Med. 149, 245–260.

    PubMed  CAS  Google Scholar 

  8. Binder, A.S., Kageler, W., Perel, A., Flick, M.R., and Staub, N.C. (1980) Effect of Platelet Depletion on Lung Vascular Permeability After Microemboli in Sheep,J. Appl. Physiol. 48, 414–420.

    PubMed  CAS  Google Scholar 

  9. Eiermann, G.J., Dickey, B.F., and Thrall, R.S. (1983) Polymorphonuclear Participation in Acute Oleic Acid Induced Lung Injury,Am. Rev. Respir. Dis. 128, 845–850.

    PubMed  CAS  Google Scholar 

  10. Baldwin, S.R., Simon, R.H., Grum, C.M., Ketai, L.H., Boxer, L.A., and Devall, L.J. (1986) Oxidant Activity in Expired Breath of Patients with Adult Respiratory Distress Syndrome,Lancet 8471, 11–13.

    Article  Google Scholar 

  11. Bernard, G.R., Lucht, W.D., Niedermeyer, M.E., Snapper, J.R., Ogletree, M.L., and Brigham, K.L. (1984) Effect ofN-Acetylcysteine on the Pulmonary Response to Endotoxin in the Awake Sheep and Uponin vitro Granulocyte Function,J. Clin. Invest. 73, 1722–1724.

    Article  Google Scholar 

  12. Ward, P.A., Till, G.O., Hetherill, J.R., Annesley, T.M., and Kinkel, R.G. (1985) Systemic Complement Activation, Lung Injury, and Products of Lipid Peroxidation,J. Clin. Invest. 76, 517–527.

    PubMed  CAS  Google Scholar 

  13. Watts, F.L., Oliver, B.L., Doran, N.H., and Thrall, R.S. (1990) Superoxide Production by Rat Neutrophils in the Oleic Acid Model of Lung Injury,Free Radical Bio. in Med. 9, 327–332.

    Article  CAS  Google Scholar 

  14. Sugarman, H.J., Bloeher, C.R., Hirsch, J.I., Strash, A.M., and Tatum, J.L. (1983) Failure of Various Agents to Decrease Oleic Acid Pulmonary Albumin Leak,J. Surg. Res. 34, 456–462.

    Article  Google Scholar 

  15. Habliston, D.L., Whitaker, C., Hart, M.A., Ryan, U.S., and Ryan, J.W. (1979) Isolation and Culture of Endothelial Cells from the Lungs of Small Animals,Am. Rev. Respir. Dis. 119, 853–868.

    PubMed  CAS  Google Scholar 

  16. D'Amore, P.A., and Klagsbrun, M. (1984) Endothelial Cell Mitogens Derived from Retina and Hypothalamus,J. Cell Biol 99, 1545–1549.

    Article  PubMed  Google Scholar 

  17. Seglen, P.O. (1972) Preparation of Rat Liver Cells: I. Effect of Calcium on Enzymatic Dispersion in Perfused Liver,Exp. Cell Res. 74, 450.

    Article  PubMed  CAS  Google Scholar 

  18. Dobbs, L.G., Gonzalez, R., and Williams, M.C. (1986) An Improved Method for Isolating Type II Cells in High Yield and Purity,Am. Rev. Respir. Dis. 134, 141.

    PubMed  CAS  Google Scholar 

  19. Denizot, F., and Lang, R. (1986) Rapid Colorimetric Assay for Cell Growth and Survival,J. Immunol. Methods 89, 271–277.

    Article  PubMed  CAS  Google Scholar 

  20. Millonig, G.J. (1961) Advantages of a Phosphate Buffer for Osmium Tetroxide Solutions in Fixation,Appl. Physiol. 32, 1637–1641.

    Google Scholar 

  21. Luft, J.H. (1961) Improvements in Epoxy Resin Embedding Methods,J. Biophys. Biochem. 9, 409.

    CAS  Google Scholar 

  22. Spurlock, B.O., Skinner, M.D., and Kattine, A.A. (1966) A Simple Rapid Method of Staining Epoxy-Embedded Specimens for Light Microscopy with the Polychromatic Stain Paragon-1301,Am. J. Clin. Pathol. 46, 252–258.

    PubMed  CAS  Google Scholar 

  23. Watson, M.L. (1958) Staining of Tissue Sections for Electron Microscopy with Heavy Metals,J. Biophys. Biochem. Cyto. 4, 475–478.

    Article  CAS  Google Scholar 

  24. Reynolds, E.S. (1963) The Use of Lead Acetate at High pH as an Electron-Opaque Stain in Electron Microscopy,J. Cell Biol. 17, 208–212.

    Article  PubMed  CAS  Google Scholar 

  25. Hurley, J.V. (1982) Types of Pulmonary Vascular Injury,Ann. NY Acad. Sci. 384, 269–286.

    PubMed  CAS  Google Scholar 

  26. Johanson, W.G., Holcomb, J.R., and Coalson, J.J. (1982) Experimental Diffuse Alveolar Damage in Baboons,Am. Rev. Respir. Dis. 126, 142–151.

    PubMed  Google Scholar 

  27. Grotjohan, H.P., Heijde, R.M., Wagenvoort, C.A., Wagenvoort, N., and Versprille, A. (1993) Pulmonary Vasoconstriction in Oleic Acid Induced Lung Injury. A Morphometric Study,Int. J. Exp. Path. 74, 347–355.

    CAS  Google Scholar 

  28. Galis, Z., Ghitescu, L., and Simionescu, M. (1988) Fatty Acids Binding to Albumin Increases Its Uptake and Transcytosis by the Lung Capillary Endothelium,Eur. J. Cell Biol. 47, 358–365.

    PubMed  CAS  Google Scholar 

  29. Schoene, R.B., Robertson, H.T., Thorning, D.R., Springmeyer, S.C., Hlastala, M.P., and Cheney, F.W. (1984) Pathophysiologic Patterns of Resolution from Acute Oleic Acid Lung Injury in the Dog,J. Appl. Physiol. 56, 472–481.

    PubMed  CAS  Google Scholar 

  30. Guarnieri, M., and Johnson, R.M. (1970) The Essential Fatty Acids,Adv. Lipid Res. 8, 115–168.

    PubMed  CAS  Google Scholar 

  31. McCarthy, M., Cottam, G.L., and Turner, W.W. (1981) Essential Fatty Acid Deficiency in Critically Ill Surgical Patients,Am. J. Surgery 142, 747–751.

    Article  CAS  Google Scholar 

  32. Fuortes, M., Polock, T.W., Holman, M.J., McMillan, M.A., Jaffe, B.M., and Scalea, T.M. (1988) Changes in Intravascular Lung Water and Fatty Acids in a Hyperdynamic Canine Model of Sepsis,J. Trauma 28, 1455–1459.

    Article  PubMed  CAS  Google Scholar 

  33. Baughman, R.P., Stein, E., MacGee, J., Rashkin, M., and Sahabjani, H. (1984) Changes in Fatty Acids in Phospholipids of the Bronchoalveolar Fluid in Bacterial Pneumonia and in Adult Respiratory Distress Syndrome,Clin. Chem. 30, 521–523.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Beilman, G. Pathogenesis of oleic acid-induced lung injury in the rat: Distribution of oleic acid during injury and early endothelial cell changes. Lipids 30, 817–823 (1995). https://doi.org/10.1007/BF02533957

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02533957

Keywords

Navigation