Skip to main content
Log in

Coagulation disorders of cardiopulmonary bypass: a review

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Background

Postoperative bleeding is one of the most common complications of cardiac surgery.

Discussion

Extensive surgical trauma, prolonged blood contact with the artificial surface of the cardiopulmonary bypass (CPB) circuit, high doses of heparin, and hypothermia are all possible triggers of a coagulopathy leading to excessive bleeding. Platelet activation and dysfunction also occur and are caused mainly by heparin, hypothermia, and inadequate protamine administration. Heparin and protamine administration based on heparin concentrations as opposed to fixed doses may reduce coagulopathy and postoperative blood loss.

Conclusions

A better comprehension of the multifactorial mechanisms of activation of coagulation, inflammation, and fibrinolytic pathways during CPB may enable a more effective use of the technical and pharmaceutical options which are currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenbloom M (1996) Re-exploration for bleeding is a risk factor for adverse outcome after cardiac operations. J Thorac Cardiovasc Surg 111:1037–1046

    CAS  PubMed  Google Scholar 

  2. Parr KG, Patel MA, Dekker R, Levin R, Glynn R, Avorn J, Morse SE (2003) Multivariate predictors of blood product use in cardiac surgery. J Cardiothorac Vasc Anesth 17:176–181

    Article  PubMed  Google Scholar 

  3. Sellman M, Intonti MA, Ivert T (1997) Reoperations for bleeding after coronary artery bypass procedures during 25 years. Eur J Cardiothorac Surg 11:521–527

    Article  CAS  PubMed  Google Scholar 

  4. Ottino G, De Paulis R, Pansini S, Rocca G, Tallone MV, Comoglio C, Costa P, Orzan F, Morea F (1987) Major sternal wound infection after open heart surgery: a multivariate analysis of risk factors in 2,579 consecutive operative procedures. Ann Thorac Surg 44:173–179

    CAS  PubMed  Google Scholar 

  5. Zacharias A, Habib RH (1996) Factors predisposing to median sternotomy complications. Deep vs superficial infection. Chest 110:1173–1178

    CAS  PubMed  Google Scholar 

  6. Weitz JI, Hudoba M, Massel D, Maraganore J, Hirsh J (1990) Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 86:385–391

    CAS  PubMed  Google Scholar 

  7. Liaw PC, Becker DL, Stafford AL, Fredenburgh JC, Weitz JI (2001) Molecular basis for the susceptibility of fibrin-bound thrombin to inactivation by heparin cofactor II in the presence of dermatan sulfate but not heparin. J Biol Chem 276:20958–20964

    Google Scholar 

  8. Brister SJ, Ofosu FA, Heigenhauser GJ, Gianese F, Buchanan MR (1994) Is heparin the ideal anticoagulant for cardiopulmonary bypass? Dermatan sulphate may be an alternate choice. Thromb Haemost 71:1–6

    PubMed  Google Scholar 

  9. Esmon CT (2001) Role of coagulation inhibitors in inflammation. Thromb Haemost 86:51–56

    CAS  PubMed  Google Scholar 

  10. Brister SJ, Ofosu FA, Buchanan MR (1993) Thrombin generation during cardiac surgery: is heparin the ideal anticoagulant? Thromb Haemost 70:259–262

    CAS  PubMed  Google Scholar 

  11. Boisclair MD, Lane DA, Philippou H, Sheikh S, Hunt B (1993) Thrombin production, inactivation and expression during open heart surgery measured by assays for activation fragments including a new ELISA for prothrombin fragment F1+2. Thromb Haemost 70:253–258

    CAS  PubMed  Google Scholar 

  12. Parolari A, Colli S, Mussoni L, Eligini S, Naliato M Wang X, Gandini S, Tremoli E, Biglioli P, Alamanni F (2003) Coagulation and fibrinolytic markers in a two month follow-up of coronary bypass surgery. J Thorac Cardiovasc Surg 125:336–343

    Article  PubMed  Google Scholar 

  13. Knudsen L, Hasenkam MJ, Kure HH, Hughes P, Bellaiche L, Ahlburg P, Djurhuus C (1996) Monitoring thrombin generation with prothrombin fragment 1.2 assay during cardiopulmonary bypass surgery. Thromb Res 84:45–54

    Article  CAS  PubMed  Google Scholar 

  14. Kaplan AP, Silverberg M (1987) The coagulation-kinin pathway of human plasma. Blood 70:1–15

    CAS  PubMed  Google Scholar 

  15. Campbell DJ, Dixon B, Kladis A, Kemme M, Santamaria JD (2001) Activation of the kallikrein-kinin system by cardiopulmonary bypass in humans. Am J Physiol Regul Integr Comp Physiol 281:R1059–R1070

    CAS  PubMed  Google Scholar 

  16. Velthius H te, Baufreton C, Jansen PG, Thijs CM, Hack CE, Sturk A, Wildevuur CR, Loisance DY (1997) Heparin coating of extracorporeal circuits inhibits contact activation during cardiac operations. J Thorac Cardiovasc Surg 114:117–122

    PubMed  Google Scholar 

  17. Boisclair MD, Lane DA, Philippou H, Esnouf MP, Sheikh S, Hunt B, Smith KJ (1993) Mechanism of thrombin generation during surgery and cardiopulmonary bypass. Blood 82:3350–3357

    CAS  PubMed  Google Scholar 

  18. Burman JF, Chung HI, Lane DA, Philippou H, Adami A, Lincoln JC (1994) Role of factor XII in thrombin generation and fibrinolysis during cardiopulmonary bypass. Lancet 344:1192–1193

    Article  CAS  PubMed  Google Scholar 

  19. Chung JH, Gikakis N, Rao AK, Drake TA, Colman RW, Edmunds LH Jr (1996) Pericardial blood activated the extrinsic coagulation pathway during clinical cardiopulmonary bypass. Circulation 93:2014–20118

    CAS  PubMed  Google Scholar 

  20. Haan J de, Boonstra PW, Monnink SH, Ebels T, van Oeveren W (1995) Retransfusion of suctioned blood during cardiopulmonary bypass impairs hemostasis. Ann Thorac Surg 59:901–907

    Article  PubMed  Google Scholar 

  21. Aldea GS, Soltow LO, Chandler WL, Triggs CM, Vocelka CR, Crocket CI, Shin YI, Curtis WE, Verrier ED (2002) Limitation of thrombin generation, platelet activation and inflammation by elimination of cardiotomy suction in patients undergoing coronary artery bypass grafting treated with heparin-bonded circuits. J Thorac Cardiovasc Surg 123:742–755

    Article  PubMed  Google Scholar 

  22. Bull MH, Huse WM, Bull BS (1975) Evaluation of tests used to monitor heparin therapy during extracorporeal circulation. Anesthesiology 43:346–353

    CAS  PubMed  Google Scholar 

  23. Cohen JA (1984) Activated coagulation time method for control of heparin is reliable during cardiopulmonary bypass. Anesthesiology 60:121–124

    CAS  PubMed  Google Scholar 

  24. Despotis GJ, Summerfeld AL, Joist JH, Goodnough LT, Santoro SA, Spitznagel E, Cox JL, Lappas DG (1994) Comparison of activated coagulation time and whole blood heparin measurements with laboratory plasma anti-Xa heparin concentration in patients having cardiac operations. J Thorac Cardiovasc Surg 108:1076–1082

    CAS  PubMed  Google Scholar 

  25. Culliford AT, Gitel SN, Starr N, Thomas ST, Baumann FG, Wessler S, Spencer FC (1981) Lack of correlation between activated clotting time and plasma heparin during cardiopulmonary bypass. Ann Surg 193:105–111

    CAS  PubMed  Google Scholar 

  26. Despotis GJ, Joist JH, Hogue CW Jr, Alsoufiev A, Kater K, Goodnough LT, Santoro SA, Spitznagel E, Rosenblum M, Lappas DG (1995) The impact of heparin concentration and activated clotting time monitoring on blood conservation. A prospective, randomized evaluation in patients undergoing cardiac operation. J Thorac Cardiovasc Surg 110:46–54

    CAS  PubMed  Google Scholar 

  27. Despotis GJ, Joist JH, Hogue CW Jr, Alsoufiev A, Joiner-Maier D, Santoro SA, Spitznagel E, Weitz JI, Goodnough LT (1996) More effective suppression of hemostatic system activation in patients undergoing cardiac surgery by heparin dosing based on heparin blood concentrations rather than ACT. Thromb Haemost 76:902–908

    CAS  PubMed  Google Scholar 

  28. Jobes DR, Aitken GL, Shaffer GW (1995) Increased accuracy and precision of heparin and protamine dosing reduces blood loss and transfusion in patients undergoing primary cardiac operations. J Thorac Cardiovasc Surg 110:36–45

    CAS  PubMed  Google Scholar 

  29. Gravlee GP, Haddon WS, Rothberger HK, Mills SA, Rogers AT, Bean VE, Buss DH, Prough DS, Cordell AR (1990) Heparin dosing and monitoring for cardiopulmonary bypass. A comparison of techniques with measurement of subclinical plasma coagulation. J Thorac Cardiovasc Surg 99:518–527

    CAS  PubMed  Google Scholar 

  30. Gravlee GP, Rogers AT, Dudas LM, Taylor R, Roy RC, Case LD, Triscott M, Brown CW, Mark LJ, Cordell AR (1992) Heparin management protocol for cardiopulmonary bypass influences postoperative heparin rebound but not bleeding. Anesthesiology 76:393–401

    CAS  PubMed  Google Scholar 

  31. Boldt J, Schindler E, Welters I, Wittstock M, Stertmann WA, Hempelmann G (1995) The effect of the anticoagulation regimen on endothelial-related coagulation in cardiac surgery patients. Anaesthesia 50:954–960

    CAS  PubMed  Google Scholar 

  32. Despotis GJ, Filos KS, Zoys TN, Hogue CW Jr, Spitznagel E, Lappas DG (1996) Factors associated with excessive postoperative blood loss and hemostatic transfusion requirements: a multivariate analysis in cardiac surgical patients. Anesth Analg 82:13–21

    CAS  PubMed  Google Scholar 

  33. Heres EK, Horrow JC, Gravlee GP, Tardiff BE, Luber J Jr, Schneider J, Barragry T, Broughton R (2001) A dose-determining trial of heparinase-I (Neutralase) for heparin neutralization in coronary artery surgery. Anesth Analg 93:1446–1452

    CAS  PubMed  Google Scholar 

  34. Levy JH, Cormack JG, Morales A (1995) Heparin neutralization by recombinant platelet factor 4 and protamine. Anesth Analg 81:35–37

    CAS  PubMed  Google Scholar 

  35. Butterworth J, Lin YA, Prielipp RC, Bennett J, Hammon JW, James RL (2002) Rapid disappearance of protamine in adults undergoing cardiac operation with cardiopulmonary bypass. Ann Thorac Surg 74:1589–1595

    Article  PubMed  Google Scholar 

  36. Ammar T, Fisher CF (1997) The effects of heparinase 1 and protamine on platelet reactivity. Anesthesiology 86:1382–1386

    Article  CAS  PubMed  Google Scholar 

  37. Lindblad B, Wakefield TW, Whitehouse WM Jr, Stanley JC (1988) The effects of protamine sulfate on platelet function. Scand J Thorac Cardiovasc Surg 22:55–59

    CAS  PubMed  Google Scholar 

  38. Barstad RM, Stephens RW, Hamers MJ, Sakariassen KS (2000) Protamine sulphate inhibits platelet membrane glycoprotein Ib-von Willebrand factor activity. Thromb Haemost 83:334–337

    CAS  PubMed  Google Scholar 

  39. Moorman RM, Zapol WM, Lowenstein E (1993) Neutralization of heparin anticoagulation. In: GP Graelee, RF Davis, RJ Utley (eds) Cardiopulmonary bypass: principles and practice. Williams and Wilkins, Baltimore

  40. Mochizuki T, Olson PJ, Szlam F, Ramsay JG, Levy JH (1998) Protamine reversal of heparin affects platelet aggregation and activated clotting time after cardiopulmonary bypass. Anesth Analg 87:781–785

    CAS  PubMed  Google Scholar 

  41. Shigeta O, Kojima H, Hiramatsu Y, Jikuya T, Terada Y, Atsumi N, Sakakibara Y, Nagasawa T, Mitsui T (1999) Low-dose protamine based on heparin-protamine titration method reduces platelet dysfunction after cardiopulmonary bypass. J Thorac Cardiovasc Surg 118:354–360

    CAS  PubMed  Google Scholar 

  42. Teoh KH, Young E, Bradley CA, Hirsh J (1993) Heparin binding proteins. Contribution to heparin rebound after cardiopulmonary bypass. Circulation 88:420–425

    Google Scholar 

  43. Martin P, Horkay F, Gupta NK, Gebitekin C, Walker DR (1992) Heparin rebound phenomenon–much ado about nothing. Blood Coagul Fibrinolysis 3:187–191

    CAS  PubMed  Google Scholar 

  44. Paparella D, Yau TM, Young E (2002) Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg 21:232–244

    Article  CAS  PubMed  Google Scholar 

  45. Cate JW ten, van der Poll T, Levi M, ten Cate H, van Deventer SJ (1997) Cytokine: triggers of clinical thrombotic disease. Thromb Haemost 78:415–419

    PubMed  Google Scholar 

  46. Nemerson Y (1988) Tissue factor and haemostasis. Blood 71:1–8

    CAS  PubMed  Google Scholar 

  47. Christman JW, Lancaster LH, Blackwell TS (1998) Nuclear factor kappa B: a pivotal role in the systemic inflammatory response syndrome and new target for therapy. Intensive Care Med 24:1131–1138

    Article  CAS  PubMed  Google Scholar 

  48. Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    Article  CAS  PubMed  Google Scholar 

  49. Morgan EN, Pohlman TH, Vocelka C, Farr A, Lindley G, Chandler W, Griscavage-Ennis JM, Verrier ED (2003) Nuclear factor kappaB mediated a procoagulant response in monocytes during extracorporeal circulation. J Thorac Cardiovasc Surg 125:165–171

    Article  CAS  PubMed  Google Scholar 

  50. Lindahl AK (1997) Tissue factor pathway inhibitor: from unknown coagulation inhibitor to major antithrombotic principle. Cardiovasc Res 33:286–291

    Article  CAS  PubMed  Google Scholar 

  51. Gori AM, Pepe G, Attanasio M, Falciani M, Abbate R, Prisco D, Fedi S, Giusti B, Brunelli T, Comeglio P, Gensini GF, Neri Serneri GG (1999) Tissue factor reduction and tissue factor pathway inhibitor release after heparin administration. Thromb Haemost 81:589–593

    CAS  PubMed  Google Scholar 

  52. Adams MJ, Cardigan RA, Marchant WA, Grocott MP, Mythen MG, Mutch M, Purdy G, Mackie IJ, Machin SJ (2002) Tissue factor pathway inhibitor antigen and activity in 96 patients receiving heparin for cardiopulmonary bypass. J Cardiothorac Vasc Anesth 16:59–63

    Article  PubMed  Google Scholar 

  53. Kojima T, Gandos S, Kemmotsu O, Mashio H, Goda Y, Kawahigashi H, Watanabe N (2001) Another point of view on the mechanism of thrombin generation during cardiopulmonary bypass: role of tissue factor pathway inhibitor. J Cardiothorac Vasc Anesth 15:60–64

    Article  CAS  PubMed  Google Scholar 

  54. Spiess BD (1991) The contribution of fibrinolysis to post bypass bleeding. J Cardiothorac Vasc Anesth 5:13–17

    Article  CAS  PubMed  Google Scholar 

  55. Chang SP, Stennet R (1988) Hemostasis and cardiopulmonary bypass. In: Krieger KH, Isom OW (eds) Blood conservation in cardiac surgery. Springer, New York Heidelberg Berlin, pp 213–66

  56. Tanaka K, Takao M, Yada I, Yuasa H, Kusagawa M, Deguchi K (1989) Alteration in coagulation and fibrinolysis associated with cardiopulmonary bypass during open heart surgery. J Cardiothorac Vasc Anesth 3:181–189

    CAS  Google Scholar 

  57. Valen G, Eriksson E, Risberg B, Vaage J (1994) Fibrinolysis during cardiac surgery. Release of tissue plasminogen activator in arterial and coronary sinus blood. Eur J Cardiothorac Surg 8:324–230

    CAS  PubMed  Google Scholar 

  58. Hunt BJ, Parrat RN, Segal HC, Sheikh S, Kallis P, Yacoub M (1998) Activation of coagulation and fibrinolysis during cardiothoracic operations. Ann Thorac Surg 65:712–718

    Article  CAS  PubMed  Google Scholar 

  59. Teufelsbauer H, Proidl S, Havel M, Vukovich T (1992) Early activation of hemostasis during cardiopulmonary bypass: evidence for thrombin mediated hyperfibrinolysis. Thromb Haemost 68:250–252

    CAS  PubMed  Google Scholar 

  60. Poll T van der, Levi M, Buller HR, van Deventer SJ, de Boer JP, Hack CE, ten Cate JW (1991) Fibrinolytic response to tumor necrosis factor in healthy subjects. J Exp Med 174:729–732

    Article  PubMed  Google Scholar 

  61. Chia S, Qadan M, Newton R, Ludlam CA, Fox KA, Newby DE (2003) Intra-arterial tumor necrosis factor-alpha impairs endothelium-dependent vasodilatation and stimulates local tissue plasminogen activator release in humans. Arterioscler Thromb Vasc Biol 23:695–701

    Article  CAS  PubMed  Google Scholar 

  62. Chia S, Ludlam CA, Fox KA, Newby DE (2003) Acute systemic inflammation enhances endothelium-dependent tissue plasminogen activator release in men. J Am Coll Cardiol 41:333–339

    Article  CAS  PubMed  Google Scholar 

  63. Gram J, Janetzko T, Jespersen J, Bruhn HD (1990) Enhanced effective fibrinolysis following the neutralization of heparin in open heart surgery increases the risk of post-surgical bleeding. Thromb Haemost 63:241–245

    CAS  PubMed  Google Scholar 

  64. Kuepper F, Dangas G, Mueller-Chorus A, Kulka PM, Zenz M, Wiebalck A (2003) Fibrinolytic activity and bleeding after cardiac surgery with cardiopulmonary bypass and low-dose aprotinin therapy. Blood Coagul Fibrinolysis 14:147–153

    Article  CAS  PubMed  Google Scholar 

  65. Levi M, Cromheecke ME, de Jonge E, Prins MH, de Mol BJM, Briet E, Buller HR (1999) Pharmacological strategies to decrease excessive blood loss in cardiac surgery: a meta-analysis of clinically relevant endpoints. Lancet 354:1940–1947

    Article  CAS  PubMed  Google Scholar 

  66. Federici AB, Berkowitz SD, Zimmerman TS, Mannucci PM (1992) Proteolysis of von Willebrand factor after thrombolytic therapy in patients with acute myocardial infarction. Blood 79:38–44

    CAS  PubMed  Google Scholar 

  67. Hamilton KK, Fretto LJ, Grierson DS, McKee PA (1985) Effects of plasmin on von Willebrand factor multimers: degradation in vitro and stimulation of release in vivo. J Clin Invest 76:261–270

    CAS  PubMed  Google Scholar 

  68. Stricker RB, Wong D, Shiu DT, Reyes PT, Shuman MA (1986) Activation of plasminogen by tissue plasminogen activator on normal and thrombasthenic platelets: effects on surface proteins and platelet aggregation. Blood 68:275–280

    CAS  PubMed  Google Scholar 

  69. Kamat SG, Michelsen AD, Benoit SE, Moake JL, Rajasekhar D, Hellums JD, Kroll MH, Shafer AI (1995) Fibrinolysis inhibits shear stress-induced platelet aggregation. Circulation 92:1399–1407

    CAS  PubMed  Google Scholar 

  70. Huang H, Ding W, Su Z, Zhang W (1993) Mechanism of the preserving effect of aprotinin on platelet function and its use in cardiac surgery. J Thorac Cardiovasc Surg 106:11–18

    CAS  PubMed  Google Scholar 

  71. Kallis P, Tooze JA, Talbot S, Cowans D, Bevan DH, Treasure T (1994) Aprotinin inhibits fibrinolysis, improves platelet adhesion and reduce blood loss. Results of a double-blind randomized clinical trial. Eur J Cardiothorac Surg 8:315–322

    CAS  PubMed  Google Scholar 

  72. Shigeta O, Kojima H, Jikuya T, Terada Y, Atsumi N, Sakakibara Y, Nagasawa T, Mitsui T (1997) Aprotinin inhibits plasmin-induced platelet activation during cardiopulmonary bypass. Circulation 96:569–574

    CAS  PubMed  Google Scholar 

  73. Haan J de, van Oeveren W (1998) Platelets and soluble fibrin promote plasminogen activation causing downregulation of platelet glycoprotein Ib/IX complexes: protection by aprotinin. Thromb Res 92:171–179

    Article  PubMed  Google Scholar 

  74. Karski JM, Teasdale SJ, Norman P, Carroll J, Van Kessel K, Wong P, Glynn MF (1995) Prevention of bleeding after cardiopulmonary bypass with high dose tranexamic acid. Double blind, randomized clinical trial. J Thorac Cardiovasc Surg 110:835–842

    CAS  PubMed  Google Scholar 

  75. Vander Salm TJ, Kaur S, Lancey RA, Okike ON, Pezzella AT, Stahl RF, Leone L, Li JM, Valeri CR, Michelson AD (1996) Reduction of bleeding after heart operations through the prophylactic use of epsilon-aminocaproic acid. J Thorac Cardiovasc Surg 112:1098–1107

    PubMed  Google Scholar 

  76. Kestin AS, Valeri CR, Khuri SF, Loscalzo J, Ellis PA, MacGregor H, Birjiniuk V, Ouimet H, Pasche B, Nelson MJ (1993) The platelet function defect of cardiopulmonary bypass. Blood 82:107–117

    CAS  PubMed  Google Scholar 

  77. Greilich PE, Brouse CF, Beckman J, Jessen ME, Martin EJ, Carr ME (2002) Reductions in platelet contractile force correlate with duration of cardiopulmonary bypass and blood loss in patients undergoing cardiac surgery. Thromb Res 105:523–529

    Article  CAS  PubMed  Google Scholar 

  78. Zilla P, Fasol R, Groscurth P, Klepetko W, Reichenspurner H, Wolner E (1989) Blood platelets in cardiopulmonary bypass. Recovery occurs after initial stimulation, rather than continual activation. J Thorac Cardiovasc Surg 97:379–388

    CAS  PubMed  Google Scholar 

  79. Cella G, Vitadello O, Gallucci V, Girolami A (1981) The release of betaβ thromboglobulin and platelet factor 4 during extracorporeal circulation for open heart surgery. Eur J Clin Invest 11:165–169

    CAS  PubMed  Google Scholar 

  80. Wahba A, Rothe G, Lodes H, Barlage S, Schmitz G, Birnbaum DE (2000) Effects of extracorporeal circulation and heparin on the phenotype of platelet surface antigens following heart surgery. Thromb Res 97:379–386

    Article  CAS  PubMed  Google Scholar 

  81. Xiao Z, Theroux P (1998) Platelet activation with unfractionated heparin at therapeutic concentrations and comparison with a low-molecular-weight heparin and with a direct thrombin inhibitor. Circulation 97:251–256

    CAS  PubMed  Google Scholar 

  82. Khuri SF, Valeri RC, Loscalzo J, Weinstein MJ, Birjiniuk V, Healey NA, MacGregor H, Doursounian M, Zolkevitz MA (1995) Heparin causes platelet dysfunction and induces fibrinolysis before cardiopulmonary bypass. Ann Thorac Surg 60:1008–1014

    Article  CAS  PubMed  Google Scholar 

  83. Muriithi EW, Belcher PR, Day SP, Menys VC, Wheatley DJ (2000) Heparin induced platelet dysfunction and cardiopulmonary bypass. Ann Thorac Surg 69:1827–1832

    Article  CAS  PubMed  Google Scholar 

  84. Muriithi EW, Belcher PR, Day SP, Chaudhry MA, Caslake MJ, Wheatley DJ (2002) Lypolisis generates platelets dysfunction after in vivo heparin administration. Clin Sci (Colch) 103:433–440

    Google Scholar 

  85. Nakajima T, Kawazoe K, Ishibashi K, Kubota Y, Sasaki T, Izumoto H, Nitatori T (2000) Reduction of heparin dose is not beneficial to platelet function. Ann Thorac Surg 70:186–190

    Article  CAS  PubMed  Google Scholar 

  86. Valeri CR, Feingold H, Cassidy G, Ragno G, Khuri S, Altschule MD (1987) Hypothermia-induced reversible platelet dysfunction. Ann Surg 205:175–181

    CAS  PubMed  Google Scholar 

  87. Michelson AD, MacGregor H, Barnard MR, Kestin AS, Rohrer MJ, Valeri CR (1994) Reversible inhibition of human platelet activation by hypothermia in vivo and in vitro. Thromb Haemost 71:633–640

    CAS  PubMed  Google Scholar 

  88. Valeri CR, Khabbaz K, Khuri SF, Marquardt C, Ragno G, Feingold H, Gray AD, Axford T (1992) Effect of skin temperature on platelet function in patients undergoing extracorporeal bypass. J Thorac Cardiovasc Surg 104:108–116

    CAS  PubMed  Google Scholar 

  89. Boldt J, Knothe C, Zickmann B, Bill S, Dapper F, Hempelmann G (1993) Platelet function in cardiac surgery: influence of temperature and aprotinin. Ann Thorac Surg 55:652–658

    CAS  PubMed  Google Scholar 

  90. Boldt J, Knothe C, Welters I, Dapper F, Hempelmann G (1996) Normothermic versus hypothermic cardiopulmonary bypass: do changes in coagulation differ? Ann Thorac Surg 62:130–135

    Article  CAS  PubMed  Google Scholar 

  91. Mazer CD, Hornstein A, Freedman J (1995) Platelet activation in warm and cold heart surgery. Ann Thorac Surg 59:1481–1486

    Article  CAS  PubMed  Google Scholar 

  92. Warm Heart Investigators (1994) Randomised trial of normothermic versus hypothermic coronary bypass surgery. Lancet 343:559–563

    Article  PubMed  Google Scholar 

  93. Birdi I, Regragui I, Izzat MB, Bryan AJ, Angelini GD (1997) Influence of normothermic systemic perfusion during coronary artery bypass operations: a randomized prospective study. J Thorac Cardiovasc Surg 114:475–481

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Paparella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paparella, D., Brister, S.J. & Buchanan, M.R. Coagulation disorders of cardiopulmonary bypass: a review. Intensive Care Med 30, 1873–1881 (2004). https://doi.org/10.1007/s00134-004-2388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-004-2388-0

Keywords

Navigation