Skip to main content

Advertisement

Log in

Large diaphyseal-incorporating allograft prosthetic composites: when, how, and why

Treatment of advanced proximal humeral bone loss

Langstreckige „allograft prosthetic composites“ (APC) mit diaphysärem Anteil: wann, wie und warum

Behandlung fortgeschrittener Knochenverluste im proximalen Humerus

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Abstract

Background

Proximal humeral bone loss in shoulder arthroplasty is a complex problem with a heterogeneous presentation. Different etiologies may contribute to varying degrees of severity in bone loss that dictate different treatment approaches.

Objectives

The purpose of this is article is to describe our technique for treatment of proximal humeral bone loss with proximal humeral allograft prosthetic composites (APC) and identify factors that may predict when larger allografts may be necessary.

Materials and methods

Ninety-nine patients were identified that had undergone reverse total shoulder arthroplasty with use of a proximal humeral allograft. Thirty-nine of these had large allografts that involved a significant portion of the diaphysis. Preoperative characteristics were examined to identify factors that may be associated with use of a larger diaphyseal-incorporating allograft.

Results

Well-fixed humeral stems could be treated with short metaphyseal allografts in 55 of 65 (85%) cases. Loose stems required longer diaphyseal-incorporating allografts in 28 of 31 (90%) cases, and these were commonly associated with periprosthetic fractures (n = 10), failed prior APC (n = 6), and infection (n = 5). Noncemented stems required diaphyseal grafts in 75% of cases, compared to cemented stems which required larger grafts in 34% of cases.

Conclusions

Proximal humeral bone loss in the setting of revision shoulder arthroplasty can be successfully managed with a reverse total shoulder and proximal humeral allograft. Larger allografts are frequently required for loose humeral stems, and noncemented stems appear more likely to require larger allografts than cemented stems.

Zusammenfassung

Hintergrund

Knochendefekte stellen in der Schulterendoprothetik ein komplexes Problem mit variationsreichem Erscheinungsbild dar. Die Ursachen sind vielfältig, und die unterschiedlichen Schweregrade an Knochenverlust erfordern zwingend individuelle Behandlungsstrategien.

Ziele

Ziel der Arbeit ist die Darstellung unserer Operationstechnik bei Knochenverlust am proximalem Humerus, bei der bevorzugt proximale Allografts im Verbund mit einer inversen Endoprothese als „allograft prosthetic composites“ (APC) verwendet werden. Ferner sollen Faktoren identifiziert werden, anhand derer sich die Notwendigkeit eines langstreckigen Aufbaus vorhersagen lassen könnte.

Materialien und Methoden

Analysiert wurden 99 Patienten, denen eine inverse Schulterendoprothese unter Verwendung von proximalen Humerus-Allografts implantiert worden war, 39 von ihnen ein langstreckiges Allograft mit diaphysärem Anteil. Die präoperativen Befunde wurden insbesondere im Hinblick auf diese langstreckigen diaphysären Defekte untersucht.

Ergebnisse

Stabil verankerte Humerusschäfte konnten mit kurzen metaphysären Allografts bei 55 von 65 Patienten (85 %) versorgt werden. Bei Schaftlockerungen waren langstreckige Allografts mit diaphysärem Anteil in 28 von 31 Fällen (90 %) erforderlich; dieses Vorgehen war überwiegend bedingt durch periprothetischen Frakturen (n = 10), bei Zustand nach misslungenem APC-Aufbau (n = 6) und durch Infektionen (n = 5). Allografts mit diaphysärem Anteil waren bei unzementierter Schaftverankerung für 75 % der Patienten erforderlich, bei zementierten Schäften dagegen nur für 34 %.

Fazit

Knochendefekte des proximalen Humerus können bei Revisionseingriffen erfolgreich mit inversen Schulterendoprothesen in Kombination mit proximalen Humerus-Allografts behandelt werden. Langstreckige Allografts sind bei Schaftlockerungen häufig erforderlich, wobei dies eher für die zementfreie Fixierung als für zementierte Schäfte gilt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2
Fig. 3
Fig. 4a,b

Similar content being viewed by others

Abbreviations

APC:

Allograft prosthetic composites

HA:

Hemiarthroplasty

ORIF:

Open reduction and internal fixation

RSA:

Reverse total shoulder arthroplasty

TSA:

Total shoulder arthroplasty

References

  1. Chacon BA, Virani N et al (2009) Revision arthroplasty with use of a reverse shoulder prosthesis-allograft composite. J Bone Joint Surg Am 1:119–127. https://doi.org/10.2106/JBJS.H.00094

    Article  Google Scholar 

  2. Levy JC, Virani N, Pupello D et al (2007) Use of the reverse shoulder prosthesis for the treatment of failed hemiarthroplasty in patients with glenohumeral arthritis and rotator cuff deficiency. J Bone Jt Surg Br 8989(2):189–195. https://doi.org/10.1302/0301-620X.89B2

    Article  Google Scholar 

  3. Cuff D, Levy JC, Gutiérrez S, Frankle MA (2011) Torsional stability of modular and non-modular reverse shoulder humeral components in a proximal humeral bone loss model. J Shoulder Elbow Surg 20(4):646–651. https://doi.org/10.1016/j.jse.2010.10.026

    Article  PubMed  Google Scholar 

  4. King JJ, Nystrom LM, Reimer NB, Gibbs CP, Scarborough MT, Wright TW (2016) Allograft-prosthetic composite reverse total shoulder arthroplasty for reconstruction of proximal humerus tumor resections. J Shoulder Elbow Surg 25(1):45–54. https://doi.org/10.1016/j.jse.2015.06.021

    Article  PubMed  Google Scholar 

  5. Walker M, Brooks J, Willis M, Frankle M (2011) How reverse shoulder arthroplasty works. Clin Orthop Relat Res 469(9):2440–2451. https://doi.org/10.1007/s11999-011-1892-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schwartz DG, Kang SH, Lynch TS et al (2013) The anterior deltoid’s importance in reverse shoulder arthroplasty: a cadaveric biomechanical study. J Shoulder Elbow Surg 22(3):357–364. https://doi.org/10.1016/j.jse.2012.02.002

    Article  PubMed  Google Scholar 

  7. Rispoli DM, Athwal GS, Sperling JW, Cofield RH (2009) The anatomy of the deltoid insertion. J Shoulder Elbow Surg 18(3):386–390. https://doi.org/10.1016/j.jse.2008.10.012

    Article  PubMed  Google Scholar 

  8. Morgan SJ, Furry K, Parekh AA, Agudelo JF, Smith WR (2006) The deltoid muscle: an anatomic description of the deltoid insertion to the proximal humerus. J Orthop Trauma 20(1):19–21. https://doi.org/10.1097/01.bot.0000187063.43267.18

    Article  PubMed  Google Scholar 

  9. Sanchez-Sotelo J, Driscoll SW, Torchia ME, Cofield RH, Rowland CM (2001) Radiographic assessment of cemented humeral components in shoulder arthroplasty. J Shoulder Elbow Surg 10(6):526–531. https://doi.org/10.1067/mse.2001.118482

    Article  CAS  PubMed  Google Scholar 

  10. Sperling JW, Cofield RH, O’Driscoll SW, Torchia ME, Rowland CM (2000) Radiographic assessment of ingrowth total shoulder arthroplasty. J Shoulder Elbow Surg 9(6):507–513. https://doi.org/10.1067/mse.2000.109384

    Article  CAS  PubMed  Google Scholar 

  11. Raiss P, Edwards TB, Deutsch A et al (2014) Radiographic changes around humeral components in shoulder arthroplasty. J Bone Joint Surg Am 96(7):e54. https://doi.org/10.2106/JBJS.M.00378

    Article  PubMed  Google Scholar 

  12. Budge MD, Moravek JE, Zimel MN, Nolan EM, Wiater JM (2013) Reverse total shoulder arthroplasty for the management of failed shoulder arthroplasty with proximal humeral bone loss: Is allograft augmentation necessary? J Shoulder Elbow Surg 22(6):739–744. https://doi.org/10.1016/j.jse.2012.08.008

    Article  PubMed  Google Scholar 

  13. Werner BS, Abdelkawi AF, Boehm D et al (2017) Long-term analysis of revision reverse shoulder arthroplasty using cemented long stems. J Shoulder Elbow Surg 26(2):273–278. https://doi.org/10.1016/j.jse.2016.05.015

    Article  PubMed  Google Scholar 

  14. Gagey O, Hue E (2000) Mechanics of the deltoid muscle. A new approach. Clin Orthop Relat Res 375:250–257. https://doi.org/10.1097/00003086-200006000-00030

    Article  Google Scholar 

  15. Meijer ST, Paulino Pereira NR, Nota SPFT, Ferrone ML, Schwab JH, Lozano Calderón SA (2017) Factors associated with infection after reconstructive shoulder surgery for proximal humerus tumors. J Shoulder Elbow Surg 26(6):931–938. https://doi.org/10.1016/j.jse.2016.10.014

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Frankle.

Ethics declarations

Conflict of interest

P.B. McLendon and J.L. Cox declares that they have no competing interests. M.A. Frankle is a paid consultant for DJO Surgical and Cayenne Medical. M.A. Frankle also receives royalties from DJO Surgical.

This article does not contain any studies with human participants or animals performed by any of the authors.

This study was determined to be exempt from review by the Western Institutional Review Board (WIRB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLendon, P.B., Cox, J.L. & Frankle, M.A. Large diaphyseal-incorporating allograft prosthetic composites: when, how, and why. Orthopäde 46, 1022–1027 (2017). https://doi.org/10.1007/s00132-017-3498-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-017-3498-z

Keywords

Schlüsselwörter

Navigation