Skip to main content
Log in

Biologisches Downsizing

Azetabuläre Knochendefekte in der Hüftrevisionsendoprothetik

Biological downsizing

Acetabular defect reconstruction in revision total hip arthroplasty

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Periazetabuläre Defekte stellen weiterhin eine große Herausforderung in der Revisionsendoprothetik des Hüftgelenkes dar. Neben der Klassifikation der Defektsituation mit Auswahl des geeigneten Revisionsimplantates ist neben der primärstabilen Verankerung der Implantate der suffiziente biologische Wiederaufbau des Defektes mit Wiederherstellung eines tragfähigen Implantatlagers essenziell für den Langzeiterfolg der azetabulären Revisionschirurgie. Die biologische Defektrekonstruktion verfolgt das Ziel eines „Downsizing“ des periazetabulären Defektes vor dem Hintergrund möglicher zukünftiger Revisionsoperationen.

Techniken

Zur biologischen Augmentation periazetabulärer Knochendefekte stehen verschiedene Verfahren zur Verfügung. Autologe Transplantate bieten den Vorteil einer sehr guten Osseointegration. Limitierungen bestehen in Form von Hebedefekten und Restriktionen der verfügbaren Volumina. Solide allogene Transplantate hingegen zeigen im Langzeitverlauf nur eine geringe Tragfähigkeit mit mitunter hohen Versagensraten. Im klinischen Alltag haben sich homologe (kortiko-) spongiöse Knochentransplantate in Kombination mit überbrückenden Abstützschalen mit guten Langzeitverläufen etabliert. Im Falle superolateraler Pfannenerker- und dorsaler Pfeilerdefekte sollten zusätzlich makroraue oder makrostrukturierte Metallkonstrukte Verwendung finden, da hier die biologischen Augmentationen ebenfalls hohe Versagensraten zeigen.

Ausblick

Der Artikel bietet einen Überblick über die klinisch verfügbaren biologischen Augmentationsmethoden von periazetabulären Knochendefekten. Aufgrund der Limitierungen von auto- und allogenen Knochentransplantaten bezüglich Verfügbarkeit und Größe liegen die Hoffnungen in der Entwicklung neuartiger implantierbarer Tissue-Engineering-Lösungen, deren Charakteristika ebenfalls Inhalt der Übersichtsarbeit sind.

Abstract

Background

Periacetabular bony defects remain a great challenge in revision total hip arthroplasty. After assessment and classification of the defect and selection of a suitable implant the primary stable fixation and sufficient biological reconstitution of a sustainable bone stock are essential for long term success in acetabular revision surgery. Biological defect reconstruction aims for the down-sizing of periacetabular defects for later revision surgeries.

Technique

In the field of biological augmentation several methods are currently available. Autologous transplants feature a profound osseointegrative capacity. However, limitations such as volume restrictions and secondary complications at the donor site have to be considered. Structural allografts show little weight bearing potential in the long term and high failure rates. In clinical practice, the usage of spongious chips implanted via impaction bone grafting technique in combination with antiprotrusio cages for the management of contained defects have shown promising long time results. Nevertheless, when dealing with craniolateral acetabular and dorsal column defects, the additional implantation of macroporous metal implants or augments should be considered since biological augmentation has shown little clinical success in these particular cases.

Prospect

This article provides an overview of the current clinically available biological augmentation methods of peri-acetabular defects. Due to the limitations of autologous and allogeneic bone transplants in terms of size and availability, the emerging field of innovative implantable tissue engineering constructs gains interest and will also be discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Paprosky WG, Perona PG, Lawrence JM (1994) Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplasty 9:33–44

    Article  CAS  PubMed  Google Scholar 

  2. Gravius S, Pagenstert G, Weber O et al (2009) Acetabular defect reconstruction in revision surgery of the hip. Autologous, homologous or metal? Orthopäde 38:729–740

    Article  CAS  PubMed  Google Scholar 

  3. Gravius S, Randau T, Wirtz DC (2011) What can be done when hip prostheses fail? : New trends in revision endoprosthetics. Orthopäde 40:1084–1094

    Article  CAS  PubMed  Google Scholar 

  4. Gravius S, Wirtz DC (2008) Welches Implantat in welcher Situation? Ein defekt- und patientenadaptierter Algorithmus. In: Wirtz DC, Rader C, Reichel H (Hrsg) Revisionsendoprothetik der Hüftpfanne. Springer, Heidelberg, S 118–132

    Google Scholar 

  5. Deschaseaux F, Sensebe L, Heymann D (2009) Mechanisms of bone repair and regeneration. Trends Mol Med 15:417–429

    Article  CAS  PubMed  Google Scholar 

  6. Khosla S, Westendorf JJ, Modder UI (2010) Concise review: insights from normal bone remodeling and stem cell-based therapies for bone repair. Stem Cells 28:2124–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silber JS, Anderson DG, Daffner SD et al (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28:134–139

    Article  PubMed  Google Scholar 

  8. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10:7–19

    Article  CAS  PubMed  Google Scholar 

  9. Soucacos PN, Johnson EO, Babis G (2008) An update on recent advances in bone regeneration. Injury 39(Suppl 2):S1–4

    Article  Google Scholar 

  10. Bernstein P, Bornhauser M, Gunther KP, Stiehler M (2009) Bone tissue engineering in clinical application: assessment of the current situation. Orthopäde 38:1029–1037

    Article  CAS  PubMed  Google Scholar 

  11. Tatara AM, Mikos AG (2016) Tissue engineering in orthopaedics. J Bone Joint Surg Am 98:1132–1139

    Article  PubMed  Google Scholar 

  12. Hooten JP Jr., Engh CA, Heekin RD, Vinh TN (1996) Structural bulk allografts in acetabular reconstruction. Analysis of two grafts retrieved at post–mortem. J Bone Joint Surg Br 78:270–275

    PubMed  Google Scholar 

  13. Shinar AA, Harris WH (1997) Bulk structural autogenous grafts and allografts for reconstruction of the acetabulum in total hip arthroplasty. Sixteen-year-average follow-up. J Bone Joint Surg Am 79:159–168

    Article  CAS  PubMed  Google Scholar 

  14. Gill TJ, Sledge JB, Muller ME (2000) The management of severe acetabular bone loss using structural allograft and acetabular reinforcement devices. J Arthroplasty 15:1–7

    Article  CAS  PubMed  Google Scholar 

  15. Wedemeyer C, Otte S, von Knoch M et al (2007) Structural femoral head allografts in revision surgery of loosened acetabular cups. Unfallchirurg 110:104–110

    Article  CAS  PubMed  Google Scholar 

  16. Young SK, Dorr LD, Kaufman RL, Gruen TA (1991) Factors related to failure of structural bone grafts in acetabular reconstruction of total hip arthroplasty. J Arthroplasty 6(Suppl):S73–S82

    Article  PubMed  Google Scholar 

  17. Lee PT, Clayton RA, Safir OA, Backstein DJ, Gross AE (2011) Structural allograft as an option for treating infected hip arthroplasty with massive bone loss. Clin Orthop Relat Res 469:1016–1023

    Article  PubMed  Google Scholar 

  18. Abdel MP, Stryker LS, Trousdale RT, Berry DJ, Cabanela ME (2014) Uncemented acetabular components with femoral head autograft for acetabular reconstruction in developmental dysplasia of the hip: a concise follow-up report at a mean of twenty years. J Bone Joint Surg Am 96:1878–1882

    Article  PubMed  Google Scholar 

  19. Slooff TJ, Buma P, Schreurs BW et al (1996) Acetabular and femoral reconstruction with impacted graft and cement. Clin Orthop Relat Res 324:108–115. doi:10.1097/00003086-199603000-00013

    Article  Google Scholar 

  20. Garbuz D, Morsi E, Mohamed N, Gross AE (1996) Classification and reconstruction in revision acetabular arthroplasty with bone stock deficiency. Clin Orthop Relat Res 324:98–107. doi:10.1097/00003086-199603000-00012

    Article  Google Scholar 

  21. Niedhart C, Pingsmann A, Jurgens C et al (2003) Complications after harvesting of autologous bone from the ventral and dorsal iliac crest – a prospective, controlled study. Z Orthop Ihre Grenzgeb 141:481–486

    Article  CAS  PubMed  Google Scholar 

  22. Ibrahim MS, Raja S, Haddad FS (2013) Acetabular impaction bone grafting in total hip replacement. Bone Joint J 95-B:98–102

    Article  CAS  PubMed  Google Scholar 

  23. Comba F, Buttaro M, Pusso R, Piccaluga F (2006) Acetabular reconstruction with impacted bone allografts and cemented acetabular components: a 2- to 13-year follow-up study of 142 aseptic revisions. J Bone Joint Surg Br 88:865–869

    Article  CAS  PubMed  Google Scholar 

  24. van Haaren EH, Heyligers IC, Alexander FG, Wuisman PI (2007) High rate of failure of impaction grafting in large acetabular defects. J Bone Joint Surg Br 89:296–300

    Article  PubMed  Google Scholar 

  25. Kostensalo I, Seppanen M, Virolainen P et al (2015) Acetabular reconstruction with impaction bone grafting and cemented polyethylene socket in total hip revision arthroplasty. Scand J Surg 104:267–272

    Article  CAS  PubMed  Google Scholar 

  26. Winter E, Piert M, Volkmann R et al (2001) Allogeneic cancellous bone graft and a Burch-Schneider ring for acetabular reconstruction in revision hip arthroplasty. J Bone Joint Surg Am 83-A:862–867

    Article  CAS  PubMed  Google Scholar 

  27. Perka C, Ludwig R (2001) Reconstruction of segmental defects during revision procedures of the acetabulum with the Burch-Schneider anti-protrusio cage. J Arthroplasty 16:568–574

    Article  CAS  PubMed  Google Scholar 

  28. Marx A, Beier A, Richter A, Lohmann CH, Halder AM (2016) Major acetabular defects treated with the Burch-Schneider antiprotrusion cage and impaction bone allograft in a large series: a 5- to 7‑ year follow-up study. Hip 26(6):585–590. doi:10.5301/hipint.5000388

    Article  PubMed  Google Scholar 

  29. Friedrich MJ, Gravius S, Schmolders J, Wimmer MD, Wirtz DC (2014) Biological acetabular defect reconstruction in revision hip arthroplasty using impaction bone grafting and an acetabular reconstruction ring. Oper Orthop Traumatol 26:126–140

    Article  CAS  PubMed  Google Scholar 

  30. Wimmer MD, Randau TM, Deml MC et al (2013) Impaction grafting in the femur in cementless modular revision total hip arthroplasty: a descriptive outcome analysis of 243 cases with the MRP-TITAN revision implant. BMC Musculoskelet Disord 14:19

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rudert M, Holzapfel BM, von Rottkay E, Holzapfel DE, Noeth U (2015) Impaction bone grafting for the reconstruction of large bone defects in revision knee arthroplasty. Oper Orthop Traumatol 27:35–46

    Article  CAS  PubMed  Google Scholar 

  32. Westerman RW, Timperley AJ (2016) Use of an anatomic long-stemmed component in femoral impaction grafting. Hip Int 26:e1–e3

    Article  PubMed  Google Scholar 

  33. Friedrich MJ, Schmolders J, Michel RD et al (2014) Management of severe periacetabular bone loss combined with pelvic discontinuity in revision hip arthroplasty. Int Orthop 38:2455–2461

    Article  PubMed  Google Scholar 

  34. Schmolders J, Friedrich MJ, Michel RD et al (2015) Acetabular defect reconstruction in revision hip arthroplasty with a modular revision system and biological defect augmentation. Int Orthop 39:623–630

    Article  PubMed  Google Scholar 

  35. Yoon ST, Boden SD (2002) Osteoinductive molecules in orthopaedics: basic science and preclinical studies. Clin Orthop Relat Res 395:33–43. doi:10.1097/00003086-200202000-00005

    Article  Google Scholar 

  36. Boden SD (2005) The ABCs of BMPs. Orthop Nurs 24:49–52 (quiz 53–44)

    Article  PubMed  Google Scholar 

  37. Sundelacruz S, Kaplan DL (2009) Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 20:646–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stangenberg L, Schaefer DJ, Buettner O et al (2005) Differentiation of osteoblasts in three-dimensional culture in processed cancellous bone matrix: quantitative analysis of gene expression based on real-time reverse transcription-polymerase chain reaction. Tissue Eng 11:855–864

    Article  CAS  PubMed  Google Scholar 

  39. Zhang X, Awad HA, O’Keefe RJ, Guldberg RE, Schwarz EM (2008) A perspective: engineering periosteum for structural bone graft healing. Clin Orthop Relat Res 466:1777–1787

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schmidt-Rohlfing B, Tzioupis C, Menzel CL, Pape HC (2009) Tissue engineering of bone tissue. Principles and clinical applications. Unfallchirurg 112:785–794 (quiz 795)

    Article  CAS  PubMed  Google Scholar 

  41. Griffith CK, Miller C, Sainson RC et al (2005) Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng 11:257–266

    Article  CAS  PubMed  Google Scholar 

  42. Young DM, Greulich KM, Weier HG (1996) Species-specific in situ hybridization with fluorochrome-labeled DNA probes to study vascularization of human skin grafts on athymic mice. J Burn Care Rehabil 17:305–310

    Article  CAS  PubMed  Google Scholar 

  43. Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27

    Article  CAS  PubMed  Google Scholar 

  44. Gravius S (2012) Periprothetische azetabuläre Knochendefektheilung: Möglichkeiten zur biologischen Defektregeneration und zum stammzellbasierten Gewebeersatz am Tiermodell Schaf. Universität Bonn, Bonn

    Google Scholar 

  45. Kruger T, Reichel H, Grubitzsch U, Hein W (2000) Etiology of early loosening after aseptic cup replacement using allogenic bone blocks and cement-free press-fit cups. Z Orthop Ihre Grenzgeb 138:209–214

    Article  CAS  PubMed  Google Scholar 

  46. van der Donk S, Weernink T, Buma P et al (2003) Rinsing morselized allografts improves bone and tissue ingrowth. Clin Orthop Relat Res 408:302–310. doi:10.1097/00003086-200303000-00041

    Article  Google Scholar 

  47. van der Donk S, Buma P, Slooff TJ, Gardeniers JW, Schreurs BW (2002) Incorporation of morselized bone grafts: a study of 24 acetabular biopsy specimens. Clin Orthop Relat Res 396:131–141. doi:10.1097/00003086-200203000-00022

    Article  Google Scholar 

  48. Wimmer MD, Wirtz DC, Gravius S (2016) Azetabuläre Defektrekonstruktion in der Revisionsendoprothetik des Hüftgelenkes. Orthop Unfallchir Prax 6:358–363

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gravius.

Ethics declarations

Interessenkonflikt

S. Koob, S. Scheidt, T. M. Randau, M. Gathen, M. D. Wimmer, D. C. Wirtz und S. Gravius geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koob, S., Scheidt, S., Randau, T.M. et al. Biologisches Downsizing. Orthopäde 46, 158–167 (2017). https://doi.org/10.1007/s00132-016-3379-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-016-3379-x

Schlüsselwörter

Keywords

Navigation