Skip to main content

Advertisement

Log in

Understanding Mercury Cycling in Tibetan Glacierized Mountain Environment: Recent Progress and Remaining Gaps

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Glacierized mountain environments can preserve and release mercury (Hg) and play an important role in regional Hg cycling. In the Tibetan Plateau (TP), most glaciers have been retreating at unprecedented rate in recent decades, acting as one of the most active factors in regional hydrological cycling. In this mini-review, we summarized recent studies on Hg distribution, transport, and accumulation in Tibetan glacierized environments. We highlight that melting glacier may represent a stimulator that exports Hg to glacier-fed ecosystems. We identified major knowledge gaps and proposed future research needs with several emphases, including quantifying Hg in glacier ablation zone, depicting Hg transport and transformation in glacial rivers during spring melt season, and better constraining glacier-export Hg and its environmental risks to the downstream. Besides, Hg isotopic technical, passive sampling and hydrological transport model should be utilized to improve the understanding of Hg cycling in high mountain regions in the TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AMAP. Mercury in the Arctic. Arctic Monitoring and Assessment Programme 2011

  • Bhatia MP, Das SB, Xu L, Charette MA, Wadham JL, Kujawinski EB (2013a) Organic carbon export from the Greenland ice sheet. Geochim Cosmochim Acta 109:329–344

    Article  CAS  Google Scholar 

  • Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA (2013b) Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat Geosci 6:274

    Article  CAS  Google Scholar 

  • Blais JM, Schindler DW, Muir DC, Sharp M, Donald D, Lafreniere M et al (2001) Melting glaciers: a major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada. AMBIO: J Hum Environ 30:410–415

    Article  CAS  Google Scholar 

  • Bogdal C, Schmid P, Zennegg M, Anselmetti FS, Scheringer M, Hungerbühler K (2009) Blast from the past: melting glaciers as a relevant source for persistent organic pollutants. Environ Sci Technol 43:8173–8177

    Article  CAS  Google Scholar 

  • Bogdal C, Nikolic D, Lüthi M, Schenker U, Scheringer M, Hungerbühler K (2010) Release of legacy pollutants from melting glaciers: model evidence and conceptual understanding. Environ Sci Technol 44:4063–4069. https://doi.org/10.1021/es903007h

    Article  CAS  Google Scholar 

  • Brigham ME, Wentz DA, Aiken GR, Krabbenhoft DP (2009) Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environ Sci Technol 43:2720–2725

    Article  CAS  Google Scholar 

  • Brooks S, Arimoto R, Lindberg S, Southworth G (2008) Antarctic polar plateau snow surface conversion of deposited oxidized mercury to gaseous elemental mercury with fractional long-term burial. Atmos Environ 42:2877–2884

    Article  CAS  Google Scholar 

  • Brun F, Berthier E, Wagnon P, Kaab A, Treichler D (2017) A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat Geosci 10:668–673

    Article  CAS  Google Scholar 

  • Chen D, Xu B, Yao T, Guo Z, Cui P, Chen F et al (2015) Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin Sci Bull 60:3025–3035

    Google Scholar 

  • Dommergue A, Ferrari CP, Gauchard PA, Boutron CF, Poissant L, Pilote M et al (2003)The fate of mercury species in a sub-arctic snowpack during snowmelt. Geophys Res Lett. https://doi.org/10.1029/2003GL017308

    Article  Google Scholar 

  • Dommergue A, Larose C, Faïn X, Clarisse O, Foucher D, Hintelmann H et al (2010) Deposition of mercury species in the Ny-Alesund area (79 degrees N) and their transfer during snowmelt. Environ Sci Technol 44:901–907

    Article  CAS  Google Scholar 

  • Durnford D, Dastoor A (2011) The behavior of mercury in the cryosphere: a review of what we know from observations. J Geophys Res: Atmos. https://doi.org/10.1029/2010JD014809

    Article  Google Scholar 

  • Durnford D, Dastoor AP, Steen AO, Berg T, Ryzhkov A, Figueras-Nieto D et al (2012) How relevant is the deposition of mercury onto snowpacks?—Part 1: a statistical study on the impact of environmental factors. Atmos Chem Phys 12:9221–9249

    Article  CAS  Google Scholar 

  • Faïn X, Grangeon S, Bahlmann E, Fritsche J, Obrist D, Dommergue A et al (2007) Diurnal production of gaseous mercury in the alpine snowpack before snowmelt. J Geophys Res: Atmos. https://doi.org/10.1029/2007JD008520

    Article  Google Scholar 

  • Feng X, Meng B, Yan H, Fu X, Yao H, Shang L (2018) Bioaccumulation of mercury in aquatic food chains. Biogeochemical cycle of mercury in reservoir systems in Wujiang River Basin, Southwest China. Springer, Singapore, pp 339–389

    Google Scholar 

  • Fisher JA, Jacob DJ, Soerensen AL, Amos HM, Steffen A, Sunderland EM (2012) Riverine source of Arctic Ocean mercury inferred from atmospheric observations. Nat Geosci 5:499

    Article  CAS  Google Scholar 

  • Grinsted A (2013) An estimate of global glacier volume. Cryosphere 7:141–151

    Article  Google Scholar 

  • Gustin MS, Amos HM, Huang J, Miller MB, Heidecorn K (2015) Measuring and modeling mercury in the atmosphere: a critical review. Atmos Chem Phys 15:5697–5713

    Article  CAS  Google Scholar 

  • Hawkings JR, Wadham JL, Tranter M, Raiswell R, Benning LG, Statham PJ et al (2014) Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat Commun 5:3929

    Article  CAS  Google Scholar 

  • Huang J, Kang S, Guo J, Zhang Q, Xu J, Jenkins MG et al (2012) Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqêntanglha, southern Tibetan Plateau. Sci Total Environ 429:223–230

    Article  CAS  Google Scholar 

  • Huang J, Kang S, Guo J, Sillanpää M, Zhang Q, Qin X et al (2014) Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau. Atmos Environ 96:27–36

    Article  CAS  Google Scholar 

  • Huss M, Bookhagen B, Huggel C, Jacobsen D, Bradley RS, Clague JJ et al (2017) Toward mountains without permanent snow and ice. Earth’s Future 5:418–435

    Article  Google Scholar 

  • Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Sci 328:1382–1385

    Article  CAS  Google Scholar 

  • Kang S, Xu Y, You Q, Flügel W-A, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5:015101

    Article  CAS  Google Scholar 

  • Kang S, Huang J, Wang F, Zhang Q, Zhang Y, Li C et al (2016) Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau. Environ Sci Technol 50:2859–2869

    Article  CAS  Google Scholar 

  • Leclercq PW, Oerlemans J, Cogley JG (2011) Estimating the glacier contribution to sea-level rise for the period 1800–2005. Surv Geophys 32:519–535

    Article  Google Scholar 

  • Li B, Yu Z, Liang Z, Acharya K (2014) Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau. Glob Planet Change 118:69–84

    Article  Google Scholar 

  • Li C, Zhang Q, Kang S, Liu Y, Huang J, Liu X et al (2015) Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment. Environ Sci Pollut Res 22:12490–12500

    Article  CAS  Google Scholar 

  • Loewen M, Kang S, Armstrong D, Zhang Q, Tomy G, Wang F (2007) Atmospheric transport of mercury to the Tibetan Plateau. Environ Sci Technol 41:7632–7638

    Article  CAS  Google Scholar 

  • Ma J, Hung H, Tian C, Kallenborn R (2011) Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nat Climate Change 1:255

    Article  CAS  Google Scholar 

  • Mei L, Wang X, Feng X, Luo J (2016) Spatial distribution and source /sink characteristic of mercury in the water samples from the Mt. Gongga area in the Tibetan Plateau. Environ Chem 35:1549–1556

    CAS  Google Scholar 

  • Mitchell CP, Branfireun BA, Kolka RK (2008) Total mercury and methylmercury dynamics in upland–peatland watersheds during snowmelt. Biogeochem 90:225–241

    Article  CAS  Google Scholar 

  • Morselli M, Semplice M, Villa S, Di Guardo A (2014) Evaluating the temporal variability of concentrations of POPs in a glacier-fed stream food chain using a combined modeling approach. Sci Total Environ 493:571–579

    Article  CAS  Google Scholar 

  • Nagorski SA, Engstrom DR, Hudson JP, Krabbenhoft DP, Hood E, DeWild JF et al (2014) Spatial distribution of mercury in southeastern Alaskan streams influenced by glaciers, wetlands, and salmon. Environ Pollut 184:62–72

    Article  CAS  Google Scholar 

  • Paudyal R, Kang S, Huang J, Tripathee L, Zhang Q, Li X et al (2017) Insights into mercury deposition and spatiotemporal variation in the glacier and melt water from the central Tibetan Plateau. Sci Total Environ 599:2046–2053

    Article  CAS  Google Scholar 

  • Qiu J (2008) China: the third pole. Nat News 454:393–396

    Article  CAS  Google Scholar 

  • Raiswell R (2013) Biogeochemistry: rusty meltwaters. Nat Geosci 6:251

    Article  CAS  Google Scholar 

  • Schroeder W, Anlauf K, Barrie L, Lu J, Steffen A, Schneeberger D et al (1998) Arctic springtime depletion of mercury. Nature 394:331

    Article  CAS  Google Scholar 

  • Schuster PF, Striegl RG, Aiken GR, Krabbenhoft DP, Dewild JF, Butler K et al (2011) Mercury export from the Yukon River Basin and potential response to a changing climate. Environ Sci Technol 45:9262–9267

    Article  CAS  Google Scholar 

  • Sharma BM, Nizzetto L, Bharat GK, Tayal S, Melymuk L, Sáňka O et al (2015) Melting Himalayan glaciers contaminated by legacy atmospheric depositions are important sources of PCBs and high-molecular-weight PAHs for the Ganges floodplain during dry periods. Environ Pollut 206:588–596

    Article  CAS  Google Scholar 

  • Stern GA, Macdonald RW, Outridge PM, Wilson S, Chetelat J, Cole A et al (2012) How does climate change influence arctic mercury? Sci Total Environ 414:22–42

    Article  CAS  Google Scholar 

  • Stocker T, Dahe Q, Plattner G (2013) Working group I contribution to the IPCC fifth assessment report climate change 2013, the physical science basis. Final draft underlying scientific-technical assessment IPCC, Stockholm

    Google Scholar 

  • Sun S, Kang S, Huang J, Li C, Guo J, Zhang Q et al (2016) Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China. J Environ Sci 44:213–223

    Article  Google Scholar 

  • Sun X, Wang K, Kang S, Guo J, Zhang G, Huang J et al (2017) The role of melting alpine glaciers in mercury export and transport: an intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau. Environ Pollut 220:936–945

    Article  CAS  Google Scholar 

  • Sun S, Kang S, Guo J, Zhang Q, Paudyal R, Sun X et al (2018a) Insights into mercury in glacier snow and its incorporation into meltwater runoff based on observations in the southern Tibetan Plateau. J Environ Sci 68:130–142

    Article  Google Scholar 

  • Sun X, Zhang Q, Kang S, Guo J, Li X, Yu Z et al (2018b) Mercury speciation and distribution in a glacierized mountain environment and their relevance to environmental risks in the inland Tibetan Plateau. Sci Total Environ 631:270–278

    Article  CAS  Google Scholar 

  • Swain EB, Engstrom DR, Brigham ME, Henning TA, Brezonik PL (1992) Increasing rates of atmospheric mercury deposition in midcontinental North America. Science 257:784–787

    Article  CAS  Google Scholar 

  • Wang X-P, Yao T-D, Wang P-L (2008) The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier, Mt. Xixiabangma, central Himalayas. Sci Total Environ 394:134–143

    Article  CAS  Google Scholar 

  • Wang X, Luo J, Yin R, Yuan W, Lin CJ, Sommar J et al (2017) Using mercury isotopes to understand mercury accumulation in the montane forest floor of the Eastern Tibetan Plateau. Environ Sci Technol 51:801–809

    Article  CAS  Google Scholar 

  • Williams SJ (2013) Sea-Level rise implications for coastal regions. J Coast Res 63:184–196

    Article  Google Scholar 

  • Wu X, Davie-Martin CL, Steinlin C, Hageman KJ, Cullen NJ, Bogdal C (2017) Understanding and predicting the fate of semivolatile organic pesticides in a glacier-fed lake using a multimedia chemical fate model. Environ Sci Technol 51:11752–11760

    Article  CAS  Google Scholar 

  • Xu X, Zhang Q, Wang WX (2016) Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: implications for using mercury stable isotopes as source tracers. Sci Rep 6:25394

    Article  CAS  Google Scholar 

  • Yang R, Jing C, Zhang Q, Wang Z, Wang Y, Li Y et al (2011) Polybrominated diphenyl ethers (PBDEs) and mercury in fish from lakes of the Tibetan Plateau. Chemosphere 83:862–867

    Article  CAS  Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Change 112:79–91

    Article  Google Scholar 

  • Yao T, Thompson LG, Mosbrugger V, Zhang F, Ma Y, Luo T et al (2012) Third pole environment (TPE). Environ Dev 3:52–64

    Article  Google Scholar 

  • Yin R, Feng X, Zhang J, Pan K, Wang W, Li X (2016) Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China. Chemosphere 147:173–179

    Article  CAS  Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F et al (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762

    Article  Google Scholar 

  • Zhang Q, Kang S, Wang F, Li C, Xu Y (2008) Major ion geochemistry of Nam Co Lake and its sources, Tibetan Plateau. Aquat Geochem 14:321–336

    Article  CAS  Google Scholar 

  • Zhang Q, Huang J, Wang F, Mark L, Xu J, Armstrong D et al (2012) Mercury distribution and deposition in glacier snow over western China. Environ Sci Technol 46:5404–5413

    Article  CAS  Google Scholar 

  • Zhang Q, Pan K, Kang S, Zhu A, Wang WX (2014) Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Environ Sci Technol 48:5220–5228

    Article  CAS  Google Scholar 

  • Zhang Q, Kang S, Gabrielli P, Loewen M, Schwikowski M (2015) Vanishing high mountain glacial archives: challenges and perspectives. ACS Publications, Washington, DC, pp 5404–9500

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41671074, 41761144078, 41630754), the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA20040502). Q.G. Zhang acknowledges financial support from the Youth Innovation Promotion Association of CAS (Grant No. 2016070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianggong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Sun, X., Sun, S. et al. Understanding Mercury Cycling in Tibetan Glacierized Mountain Environment: Recent Progress and Remaining Gaps. Bull Environ Contam Toxicol 102, 672–678 (2019). https://doi.org/10.1007/s00128-019-02541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-019-02541-0

Keywords

Navigation