Skip to main content

Advertisement

Log in

Major Ion Geochemistry of Nam Co Lake and its Sources, Tibetan Plateau

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The major cations and anions from lake water samples and its sources, including glacier snow, precipitation, stream, and swamp water in the Nam Co basin, central Tibetan Plateau, were studied. The concentrations of the major ions varied significantly in the five environmental matrices. Generally, the mean concentrations of most ions are in the order of lake water > swamp water > stream water > precipitation > snow. Rock weathering is the dominant process controlling the chemical compositions of the stream and swamp waters, with carbonate weathering being the primary source of the dissolved ions. The Nam Co lake water is characterized by high Na+ concentration and extremely low Ca2+ concentration relative to other ions, resulting from evapoconcentration and chemical precipitation within the lake. Comparison with the water chemistry of other lakes over the Tibetan Plateau indicated that Nam Co is located in a transition area between non-saline lakes and highly saline lakes. The relatively low concentration of total dissolved solids is possibly due to the abundant inflow of glacial meltwater and relatively high annual precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banks D, Parnachev VP, Frengstad B, Holden W, Karnachuk OV, Vedernikov AA (2004) The evolution of alkaline, saline ground- and surface waters in the southern Siberian steppes. Appl Geochem 19(12):1905–1926. doi:10.1016/j.apgeochem.2004.05.009

    Article  Google Scholar 

  • Berner EK, Berner RA (1996) Global environment: water, air, and geochemical cycles. Prentice Hall, New Jersey

    Google Scholar 

  • Brown GH, Sharp M, Tranter M (1996) Subglacial chemical erosion: seasonal variations in solute provenance, Haut Glacier d’Arolla, Valais, Switzerland. In: Collins D (ed) Annals of glaciology, vol 22. Proceedings of the international symposium on glacial erosion and sedimentation. Annals of glaciology, pp 25–31

  • CAS (1982) Physical geography of Xizang (Tibet). Science Press, Beijing

    Google Scholar 

  • CAS (1984) Rivers and Lakes of Xizang(Tibet). Science Press, Beijing

    Google Scholar 

  • Chen JS, Wang FY, Xia XH, Zhang LT (2002) Major element chemistry of the Changjiang (Yangtze River). Chem Geol 187(3–4):231–255. doi:10.1016/S0009-2541(02)00032-3

    Article  Google Scholar 

  • Chen JS, Wang FY, Meybeck M, He DW, Xia XH, Zhang LT (2005) Spatial and temporal analysis of water chemistry records (1958-2000) in the Huanghe (Yellow River) basin. Glob Biogeochem Cycles 19(3). doi:10.1029/2004GB002325

  • Cong ZY, Kang SC, Liu XD, Wang GF (2007) Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season. Atmos Environ 41(6):1180–1187. doi:10.1016/j.atmosenv.2006.09.046

    Article  Google Scholar 

  • Fortner SK, Tranter M, Fountain A, Lyons WB, Welch KA (2005) The geochemistry of supraglacial streams of Canada Glacier, Taylor Valley (Antarctica), and their evolution into proglacial waters. Aquat Geochem 11(4):391–412. doi:10.1007/s10498-004-7373-2

    Article  Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. Norton, New York

    Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090. doi:10.1126/science.170.3962.1088

    Article  Google Scholar 

  • Ju JT, Zhu LP, Wang Y, Xie MP, Peng P, Zhen XL Wang JB (in press) Preliminary research on composition, spatial distribution, and environmental significance of water ions in Pumayum Co lake and its catchment, South Tibet. J Geogr Sci

  • Kapp JLD, Harrison TM, Kapp P, Grove M, Lovera OM, Lin D (2005) Nyainqentanglha Shan: a window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. J Geophys Res Solid Earth 110(B8). doi:10.1029/2004JB003330

  • Kutzbach JE, Guetter PJ, Ruddiman WF, Prell WL (1989) Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West: numerical experiments. J Geophys Res 94(D15):18393–18407. doi:10.1029/JD094iD15p18393

    Article  Google Scholar 

  • Li C, Kang SC, Zhang QG, Kaspari S (2007a) Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau. Atmos Res 85(3–4):351–360. doi:10.1016/j.atmosres.2007.02.006

    Article  Google Scholar 

  • Li CL, Kang S, Cong ZY (2007b) Elemental composition of aerosols collected in the glacier area on Mt. Nyainqêntanglha, Tibetan Plateau, during summer monsoon season. Chin Sci Bull 52(24):3436–3442. doi:10.1007/s11434-007-0445-0

    Article  Google Scholar 

  • Li CL, Kang SC, Wang XP, Ajmone-Marsan F, Zhang QG (2008) Heavy metals and rare earth elements (REEs) in soil from the Nam Co Basin, Tibetan Plateau. Environ Geol 53:1433–1440. doi:10.1007/s00254-007-0752-4

    Article  Google Scholar 

  • Li M, Kang S, Zhu L, You Q, Zhang Q, Wang J (2008) Mineralogy and geochemistry of the Holocene Lacustrine sediments in Nam Co, Tibet. Quaternary Int 187(1):105–116. doi:10.1016/j.quaint.2007.12.008

    Article  Google Scholar 

  • LIZIG (1979) Qinghai Lake monograph of the 1961 expedition. Science Press, Beijing

    Google Scholar 

  • Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon. Rev Geophys 31(4):357–396. doi:10.1029/93RG02030

    Article  Google Scholar 

  • Mügler I, Sachse D, Werner M, Xu B, Wu G, Yao T, Gleixner G (2008) Effect of lake evaporation on δD values of lacustrine n-alkanes: a comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Org Geochem 39(6):711–729. doi:10.1016/j.orggeochem.2008.02.008

    Article  Google Scholar 

  • Pandey SK, Singh AK, Hasnain SI (1999) Weathering and geochemical processes controlling solute acquisition in Ganga headwater-Bhagirathi river, Garhwal Himalaya, India. Aquat Geochem 5(4):357–379. doi:10.1023/A:1009698016548

    Article  Google Scholar 

  • Qian H, Ma ZY (2005) Hydrogeology and geochemistry. Geological Press, Beijing

    Google Scholar 

  • Rowley DB, Currie BS (2006) Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439(7077):677–681. doi:10.1038/nature04506

    Article  Google Scholar 

  • Sarin MM, Krishnaswami S, Dilli K, Somayajulu BLK, Moore WS (1989) Major ion chemistry of the Ganga-Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochim Cosmochim Acta 53:997–1009. doi:10.1016/0016-7037(89)90205-6

    Article  Google Scholar 

  • Shao ZG, Meng XG, Zhu DG, Wang J, Yang CB, Han JE et al (2004) Variation of precipitation in Nam Co, Tibet, since the late Pleistocene and its environmental response. J Geom 10(4):337–343 (in Chinese)

    Google Scholar 

  • Singh AK, Hasnain SI (2002) Aspects of weathering and solute acquisition processes controlling chemistry of sub-Alpine proglacial streams of Garhwal Himalaya, India. Hydrol Process 16(4):835–849. doi:10.1002/hyp.367

    Article  Google Scholar 

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon: the influence of the geology and weathering environment on the dissolved load. J Geophys Res 88:9671–9688. doi:10.1029/JC088iC14p09671

    Article  Google Scholar 

  • Stumm W (1992) Chemistry of the solid–water interface. Wiley, New York

    Google Scholar 

  • Wang SM, Dou HS (1998) Directory of lakes in China. Science Press, Beijing

    Google Scholar 

  • Wang R, Yang XD, Zhu LP (2006) Environmental changes of Nam Co, Xizang, during the past 200 years. Quaternary Sci 26(5):791–798 (in Chinese)

    Google Scholar 

  • Yan JP, Hinderer M, Einsele G (2002) Geochemical evolution of closed-basin lakes: general model and application to Lakes Qinghai and Turkana. Sediment Geol 148(1–2):105–122. doi:10.1016/S0037-0738(01)00212-3

    Article  Google Scholar 

  • Yang XD, Kamenik C, Schmidt R, Wang SM (2003) Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai-Xizang) Plateau lakes. J Paleolimnol 30(1):1–19. doi:10.1023/A:1024703012475

    Article  Google Scholar 

  • Yuan J, Gao JX, Lu XG, Chen KL (2002) Assessment of wetland resources in Lake Nam Co and Counter measures for conservation and rational use. Resour Sci 24(4):29–34 (in Chinese)

    Google Scholar 

  • Zhao XT, Zhu DG, Yan FH, Wu ZH, Ma ZB, Mai XS (2003) Climatic change and lake-level variation of Nam Co. Xiang since the last interglacial stage. Quaternary Sci 23:41–52 (in Chinese)

    Google Scholar 

  • Zhu DG, Meng XG, Zhao XT, Shao ZG, Yang CB, Ma ZB et al (2004) Evolution and climatic change of Nam Co of Tibet and an ancient large lake in the northern Tibetan Plateau since the late Pleistocene. Geol China 31:269–277 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

We thank Zhiyuan Cong and the staff of NAMOR for their assistance in field logistics. This study was supported by the National Natural Science Foundation of China (40771187), the National Basic Research program of China (2005CB422004), the “Talent Project” of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichang Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Kang, S., Wang, F. et al. Major Ion Geochemistry of Nam Co Lake and its Sources, Tibetan Plateau. Aquat Geochem 14, 321–336 (2008). https://doi.org/10.1007/s10498-008-9039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-008-9039-y

Keywords

Navigation