Skip to main content

Advertisement

Log in

Source Apportionment of PM2.5 in Delhi, India Using PMF Model

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Chemical characterization of PM2.5 [organic carbon, elemental carbon, water soluble inorganic ionic components, and major and trace elements] was carried out for a source apportionment study of PM2.5 at an urban site of Delhi, India from January, 2013, to December, 2014. The annual average mass concentration of PM2.5 was 122 ± 94.1 µg m−3. Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon. A receptor model, positive matrix factorization (PMF) was applied for source apportionment of PM2.5 mass concentration. The PMF model resolved the major sources of PM2.5 as secondary aerosols (21.3 %), followed by soil dust (20.5 %), vehicle emissions (19.7 %), biomass burning (14.3 %), fossil fuel combustion (13.7 %), industrial emissions (6.2 %) and sea salt (4.3 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Begum BA, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38:3025–3038

    Article  CAS  Google Scholar 

  • Begum BA, Akhter S, Sarker L, Biswas SK (2006) Gravimetric analysis of air filters and quality assurance in weighing. Nucl Sci Appl 15:36–41

    Google Scholar 

  • Behra SN, Sharma M (2010) Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Sci Total Environ 408:3569–3575

    Article  Google Scholar 

  • Beuck H, Quass U, Klemm O, Kuhlbusch TA (2011) Assessment of sea salt and mineral dust contributions to PM10 in NW Germany using tracer models and positive matrix factorization. Atmos Environ 45:5813–5821

    Article  CAS  Google Scholar 

  • Chowdhury Z, Zheng M, Schauer JJ, Sheesley RJ, Salmon LG, Cass GR, Russell AG (2007) Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities. J Geophys Res 112:D15303

    Article  Google Scholar 

  • Cusack M, Perez N, Pey J, Alastuey A, Querol X (2013) Source apportionment of fine PM and sub-micron particle number concentrations at a reginal background site in the western Mediterranean: a 2.5 year study. Atmos Chem Phys 13:5173–5187

    Article  CAS  Google Scholar 

  • Datta A, Saud T, Goel A, Tiwari S, Sharma SK, Saxena M, Mandal TK (2010) Variation of ambient SO2 over Delhi. J Atmos Chem 65:127–143

    Article  CAS  Google Scholar 

  • Gupta AK, Karar K, Srivastava A (2007) Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India. J Hazard Mater 142:279–287

    Article  CAS  Google Scholar 

  • Karanasiou AA, Siskos PA, Eleftheriadis K (2009) Assessment of source apportionment by positive matrix factorization analysis on fine and coarse urban aerosol size fractions. Atmos Environ 43:3385–3395

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK (2004) Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions. J Air Waste Manag Assoc 53:773–785

    Article  Google Scholar 

  • Lee JH, Hopke PK (2006) Apportioning sources of PM2.5 in St. Louis, MO using speciation trends network data. Atmos Environ 40:360–377

    Article  Google Scholar 

  • Lough GC, Schauer JJ, Park JS, Shafer MM, De Minter JT, Weinstein JP (2005) Emissions of metals associated with motor vehicle roadways. Environ Sci Technol 39:826–836

    Article  CAS  Google Scholar 

  • Mandal P, Saud T, Sarkar R, Mandal A, Sharma SK, Mandal TK, Bassin JK (2014) High seasonal variation of atmospheric C and particulate concentrations in Delhi, India. Environ Chem Lett. doi:10.1007/s10311-013-0438-y

    Google Scholar 

  • Paatero P (1997) Least squares formulation of robust nonnegative factor analysis. Atmos Environ 37:23–35

    CAS  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  • Pant P, Harriso RM (2012) Critical review of receptor modelling of particulate matter: a case study of India. Atmos Environ 49:1–12

    Article  CAS  Google Scholar 

  • Perrino C, Tiwari S, Catrambone M, Torre SD, Rantica E, Canepari S (2011) Chemical characterization of atmospheric PM in Delhi, India during different periods of the year including Diwali festival. Atmos Pollut Res 2:418–427

    Article  CAS  Google Scholar 

  • Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. JAPCA 56:709–742

    CAS  Google Scholar 

  • Pope CA, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360:376–386

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM, Tripathi SN (2010) One-year record of carbonaceous aerosols from an urban location (Kanpur) in the Indo-Gangetic Plain: characterization, sources and temporal variability. J Geophys Res. doi:10.1029/2010JD014188

    Google Scholar 

  • Ramgolam K, Favez O, Cachier H, Gaudichet A, Marano F et al (2009) Size-partitioning of an urban aerosol to identify particle determinants involved in the proinflammatory response induced in airway epithelial cells. Part Fibre Toxicol 6:1–12

    Article  Google Scholar 

  • Salma I, Chi XG, Maenhaut W (2004) Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary. Atmos Environ 38:2517–2528

    Article  Google Scholar 

  • Sharma M, Kishore S, Tripathi SN, Behra SN (2007) Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: a study at Kanpur, India. J Atmos Chem 58:1–17

    Article  CAS  Google Scholar 

  • Sharma SK, Singh AK, Saud T, Mandal TK, Saxena M, Singh S, Ghosh S, Raha S (2012) Study on water soluble ionic composition of PM10 and trace gases over Bay of Bengal during W_ICARB campaign. Meteorol Atmos Phys 118:37–51

    Article  Google Scholar 

  • Sharma SK, Mandal TK, Saxena M, Rashmi Rohtash, Sharma A, Gautam R (2014) Variation of OC, EC, WSIC and trace metals of PM10 in Delhi. J Atmos Sol Terr Phys 113:10–22

    Article  CAS  Google Scholar 

  • Sharma SK, Sharma A, Saxena M, Choudhary N, Masiwal R, Mandal TK, Sharma C (2015) Chemical characterization and source apportionment of aerosol at an urban area of Central Delhi, India. Atmos Pollut Res. doi:10.1016/j.apr.2015.08.002

    Google Scholar 

  • Shridhar V, Khillare PS, Agarwal T, Ray S (2010) Metallic species in ambient particulate matter at rural and urban location of Delhi. J Hazard Mater 175:600–607

    Article  CAS  Google Scholar 

  • Song Y, Zhang Y, Xie S, Zeng L, Zheng M, Salmon LG, Shao M, Slanina S (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40(1):1526–1537

    Article  CAS  Google Scholar 

  • Tauler R, Viana M, Querol X, Alastuey A, Flight RM, Wentzell PD, Hopke PK (2009) Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmos Environ 43:3989–3997

    Article  CAS  Google Scholar 

  • Ulbrich IM, Canagaratna MR, Zhang Q, Worsnop DR, Jimenez JL (2009) Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos Chem Phy 9:2891–2918

    Article  CAS  Google Scholar 

  • USEPA (2008) EPA positive matrix factorization (PMF) 3.0 fundamentals and user guide. USEPA Office of Research and Development, Washington, DC

  • Waked A, Favez O, Alleman LY, Piot C, Petit JE, Delaunay T et al (2014) Source apportionment of PM10 in a north-western Europe regional urban backgroung site (Lens, France) using positive matrix factorization and including primary biogenic emission. Atmos Chem Phy 14:3325–3346

    Article  CAS  Google Scholar 

  • Wu CF, Larson TV, Wu SY, Williamson J, Westberg HH, Liu LJS (2007) Source apportionment of PM2.5 and selected hazardous air pollutants in Seattle. Sci Total Environ 386:42–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-NPL, New Delhi and Head, Radio and Atmospheric Sciences Division (RASD), CSIR-NPL, New Delhi for their encouragement. The authors also acknowledge the Council of Scientific and Industrial Research, New Delhi for providing partial financial support for this study (PSC-0112 Project). Authors thankfully acknowledge to Ms. Nikki Choudhary, Ms. Renu Masiwal, Dr. Anshu Gupta and Dr. N.C. Gupta, University School of Environment Management, GGS IP University, Delhi, India for partial sample collection and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.K., Mandal, T.K., Jain, S. et al. Source Apportionment of PM2.5 in Delhi, India Using PMF Model. Bull Environ Contam Toxicol 97, 286–293 (2016). https://doi.org/10.1007/s00128-016-1836-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1836-1

Keywords

Navigation