Skip to main content

Advertisement

Log in

Study on water-soluble ionic composition of PM10 and related trace gases over Bay of Bengal during W_ICARB campaign

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Aerosol (PM10) samples were collected and its precursor gases, i.e., NH3, NO, NO2, and SO2 measured over Bay of Bengal (BoB) during winter months of December 2008 to January 2009 to understand the relationship between particular matter (PM) and precursor gases. The observations were done under the winter phase of Integrated Campaign on Aerosols, gases and Radiation Budget (W_ICARB). The distribution of water-soluble inorganic ionic composition (WSIC) and its interaction with precursor gases over BoB are reported in present case. Average atmospheric concentration of NH3, NO, NO2, and SO2 were recorded as 4.78 ± 1.68, 1.89 ± 1.26, 0.31 ± 0.14, and 0.80 ± 0.30 μg m−3, whereas WSIC component of PM10, i.e., NH4 +, SO4 2−, NO3 , and Cl were recorded as 1.96 ± 1.66, 8.68 ± 3.75, 1.92 ± 1.75, and 2.48 ± 0.78 μg m−3, respectively. In the present case, abundance of nss-SO4 2− in the particulate matter is recorded as 18 %. It suggests the possibility of long-range transport as well as marine biogenic origin. Higher SO4 2−/(SO2 + SO4 2−) equivalent molar ratio during the campaign indicates the gas-to-particle conversion with great efficiency over the study region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aastar GI, Nair PR (2010) Spatial distribution of near surface CO over bay of Bengal during winter: role of transport. J Atmos Solar Terr Phys 75:1241–1250

    Google Scholar 

  • Aneja VP, Roelle PA, Murray GC, Southerland J, Erisman JW, Fowler D, Asman WAH, Patni N (2001) Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment. Atmos Environ 35:1903–1911

    Article  Google Scholar 

  • Asnani GC (1993) Tropical Meteorology, Indian Institute of Tropical Meteorology, Pashan, Pune

  • Athanasopoulou E, Tombrou M, Pandis SN, Russell AG (2008) The role of Sea-salt emission and heterogeneous chemistry in the air quality of polluted coastal areas. Atmos Chem Phys 8:5755–5769

    Article  Google Scholar 

  • Ayers GP, Gras JL (1980) Ammonia gas concentration over the Southern Ocean. Nature 284:539–540

    Article  Google Scholar 

  • Baek BH, Aneja VP (2004) Measurement and analysis of the relation between ammonia, acid gases and fine particles in eastern North Carolina. J Air Waste Manag Assoc 54:623–633

    Article  Google Scholar 

  • Bardouki H, Liakakou H, Economou C, Sciare J, Smolik J, Zdimal V, Eleftheriadis K, Lazaridis M, Dye C, Mihalopoulos N (2003) Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmos Environ 37:195–208

    Article  Google Scholar 

  • Biswas H, Chatterjee A, Mukhopadhya SK, De TK, Sen S, Jana TK (2005) Estimation of ammonia exchange at the land–ocean boundary condition of Sundarban mangrove northeast coast of Bay of Bengal, India. Atmos Environ 39:4489–4499

    Article  Google Scholar 

  • Blackall TD, Wilson LJ, Theobald MR, Milford C, Nemitz E, Bull J, Bacon PJ, Hamer KC, Wanless S, Sutton MA (2007) Ammonia emission from seabird colonies. Geophys Res Lett 34:L10801. doi:10.1029/2006GL028928

  • Carmichael GR, Hong MS, Ueda H, Chen LL, Murano K, Park JK, Lee H, Kim Y, Kang C, Shim S (1997) Aerosol composition at Cheju Island, Korea. J Geophys Res 102:6047–6061

    Article  Google Scholar 

  • Carmichael GR, Ferm M, Thongboonchoo N, Woo JH, Chan LY, Murano K, Viet PH, Mossberg C, Bala R, Boonjawat J, Upatum P, Mohan M, Adhikary SP, Shrestha AB, Pinaar JJ, Brunke EB, Chen T, Jie T, Guoan D, Peng LC, Dhiharto S, Harjanto H, Jose AM, Kimani W, Kirouane A, Lacaus J-P, Richard S, Barturen O, Cerda JC, Athayde A, Tavares T, Cotrina JS, Bilici E (2003) Measurements of sulfur dioxide, ozone and ammonia concentration in Asia, Africa and South America using passive samplers. Atmos Environ 37:1293–1308

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326:655–661

    Article  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring

  • Duce RA, Arimoto R, Ray BJ, Unni CK, Harder PJ (1983) Atmospheric trace elements at Enewetak Atoll I, concentrations, sources and temporal variability. J Geophys Res 88:5321–5342

    Article  Google Scholar 

  • Duce RA, Liss PS, Merrill JT, Atlas EL, Menard PB, Hicks BB, Miller JM, Prospero JM, Arimoto R, Church TM, Ellis W, Galloway JN, Hansen L, Jickells TD, Knap AH, Reinhardt KH, Schneider B, Soudine A, Tokos JJ, Keene WC, Pszenny AP, Vogt R, Galloway JN, Hawley ME (1986) Sea salt corrections and interpretations of constituent ratios in marine precipitation. J Geophys Res 91:6647–6658

    Article  Google Scholar 

  • Duce RA, Liss PS, Merrill JT, Atlas EL, Buat-Menard P, Hicks BB (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem Cycles 5(3):193–259

    Article  Google Scholar 

  • Eleftheriadis K, Balis ZI, Manalis N (1998a) Atmospheric aerosol and gaseous species in Athens, Greece. Atmos Environ 32:2183–2191

    Article  Google Scholar 

  • Eleftheriadis K, Chung MC, Colbeck I (1998b) Atmospheric aerosol formation over Athens. J Aerosol Sci 29:S25–S26

    Article  Google Scholar 

  • Franke K, Richter A, Bovensmann H, Eyring V, J¨ockel P, Hoor P, Burrows JP (2009) Ship emitted NO2 in the Indian Ocean: comparison of model results with satellite data. Atmos Chem Phys 9:7289–7301

    Google Scholar 

  • Garrett TJ, Hobbs PV (1995) Long-range transport of continental aerosols over the Atlantic Ocean and their effects on cloud structure. J Atmos Sci 56:2977–2984

    Article  Google Scholar 

  • Gibb SW, Mantouura RFC, Liss PS (1999) Ocean–atmosphere exchange and speciation of ammonia and methylamines in the region of the NW Arabian Sea. Global Biogeochem Cycles 13:161–178

    Article  Google Scholar 

  • Gupta A, Kumar R, Maharaj KK, Srivastava SS (2003) Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmos Environ 37:4837–4846

    Article  Google Scholar 

  • Huebert BJ, Zhuang L, Howell S, Noone K, Noone B (1996) Sulfate, nitrate, methanesulfonate, chloride, ammonium and sodium measurements from ship, island and aircraft during the Atlantic Stratocumulus Transition Experiment/Marine Aerosol Gas Exchange. J Geophys Res 101:4413–4423

    Article  Google Scholar 

  • Johansen AM, Siefert RL, Hoffmann MR (1999) Chemical characterization of ambient aerosol collected during the southwest-monsoon and inter-monsoon seasons over the Arabian Sea: anions and cations. J Geophys Res 104:26325–26347

    Article  Google Scholar 

  • Johnson GC, Purkey SG, Toole JM (2008a) Reduced Antarctic meridional overturning circulation reaches the North Atlantic Ocean. Geophys Res Lett 35:L22601. doi:10.1029/2008GL035619

  • Johnson M, Liss P, Bell T, Lesworth T, Baker A, Hind AJ, Farhana B, Jickells T, Woodward M, Gibb S (2008b) Field observations of the ocean–atmosphere exchange of ammonia: fundamental importance of temperature as revealed by a comparison of high and low latitudes. Global Biogeochem Cycles 22:GB1019

    Google Scholar 

  • Keene WC, Pszenny AAP, Galloway JN, Hawley ME (1986) Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J Geophys Res 91:6647–6658

    Article  Google Scholar 

  • Khemani LT, Momin GA, Singh G (1987) Variation in trace gases concentrations in different environments in India. PAGEOPH 125:151–158

    Article  Google Scholar 

  • Krishnamurti TN, Jha B, Prospero JM, Jayaraman A, Ramanathan V (1998) Aerosol and pollutant transport and their impact on radiative forcing over the tropical Indian Ocean during the January–February 1986 pre-INDOEX cruise. Tellus 50B:521–542

    Google Scholar 

  • Kunhikrishnan T, Lawrence MG, von-Kuhlmann R, Richter A, Ladstätter-Weißenmayer A, Burrows JP (2004) Analysis of tropospheric NO x over Asia using the model of atmospheric transport and chemistry (MATCH-MPIC) and GOME-satellite observations. Atmos Environ 38(4): 581–596

    Google Scholar 

  • Lawrence MG, Crutzen PJ, Rasch PJ, Eaton PE, Mahowald NM (1999) A model for studies of tropospheric chemistry photochemistry: description, global distribution and evaluation. J Geophys Res 104:26245–26277

    Article  Google Scholar 

  • Lebel PJ, Hoell JM, Levine JS, Vay SA (1985) Aircraft measurements of ammonia and nitric acid in the lower troposphere. Geophys Res Lett 12:401–404

    Article  Google Scholar 

  • Li Y, Schwab JJ, Demerjian KL (2006) Measurement of ambient ammonia using a tunable diode laser absorption spectrometer: characteristics of ambient ammonia emissions in an urban area of New York City. J Geophys Res 111(D10). doi:10.1029/2005JD006275

  • Malm WC, Johnson CE, Bresch JF (1986) Application of principal component analysis for purposes of identifying source–receptor relationships in receptor methods for source apportionment. In: Pace TG (ed) Air Pollution Control Association, Pittsburgh, p 127–148

  • Mcinnes LM, Covert DS, Quinn PK, Germani MS (1994) Measurements of chloride depletion and sulfur enrichment in individual sea-salt particles collected from the remote marine boundary layer. J Geophys Res 99:8257–8268

    Article  Google Scholar 

  • McKee CM (2001) Biogeochemical cycles of ammonia and dimethylsulphide in the marine environment, University of East Anglia, Norwich

  • Naja M, Shyam L, Modh KS, Chand D (1999) Variabilities in O3, NO, CO and CH4 over Indian Ocean during winter. Curr Sci 76:931–937

    Google Scholar 

  • Norman M, Leck C (2005) Distribution of marine boundary layer ammonia over the Atlantic and Indian Ocean during the Aerosols 99 cruise. J Geophys Res 110:D16302

    Article  Google Scholar 

  • Poirot RL, Wishinshi PR (1986) Visibility, sulfate, and air mass history associated with the summertime aerosol in northern Vermont. Atmos Environ 20:1457–1469

    Article  Google Scholar 

  • Poissant L (1999) Potential sources of atmospheric total gaseous mercury in the St. Lawrence River Valley. Atmos Environ 33:2537–2547

    Article  Google Scholar 

  • Polissar AV, Hopke PK, Harris JM (2001) Source regions for atmospheric aerosol measured at Barrow, Alaska. Environ Sci Technol 35:4214–4226

    Article  Google Scholar 

  • Putaud JP, Mihalopoulous N, Nguyen BC, Campin JM, Beloviso S (1992) Seasonal variation of atmospheric sulfur dioxide and dimethylsulfide concentrations at Amsterdam Island in the southern Indian Ocean. J Atmos Chem 15:117–131

    Article  Google Scholar 

  • Qunin PK, Charlson RJ, Bates TS, Johnson JE, Covert DS, Charlson RJ (1990) Interactions between the sulfur and reduced nitrogen cycles over the central Pacific Ocean. J Geophys Res 95(16):405–416

    Google Scholar 

  • Rajeev K, Ramanathan V, Meywerk J (2000) Regional aerosol distribution and its long-range transport over the Indian Ocean. J Geophys Res 105:2029–2043

    Article  Google Scholar 

  • Reddy LAK, Kulshrestha UC, Satyanarayana J, Kulshrestha MJ, Seinfeld JH (1986) Atmospheric chemistry and physics of air pollution. Wiley, New York, pp 337–378

    Google Scholar 

  • Reddy LAK, Kulshrestha UC, Satyanarayana J, Kulshrestha MJ, Moorthy KK (2008) Chemical characteristics of PM10 aerosols and airmass trajectories over Bay of Bengal and Arabian Sea during ICARB. J Earth Syst Sci 117:345–352

    Article  Google Scholar 

  • Reiner T, Sprung D, Jost C, Gabriel R, Mayol-Bracero OL, Andreae MO, Campos TL Shetter RE (2001) Chemical characterization of pollution layers over the tropical Indian Ocean: signatures of emissions of from biomass and fossil fuel burning. J Geophys Res 106(D22):28497–28510

    Google Scholar 

  • Rhoads KP, Dickerson RR, Kelley P, Carsey T, Farmer M, Savie D, Prospero J (1997) The comparison of the troposphere over the Indian Ocean during the monsoonal season. J Geophys Res 102(15):18981–18995

    Article  Google Scholar 

  • Schafer P, Kreilen H, Muller M, Gravenhorst G (1993) Cycling of inorganic nitrogen compounds between atmosphere and ocean in tropical area of south east Asia. SCOPE/UNEP 76:19–36

    Google Scholar 

  • Seinfeld JH (1986) Air pollution. John Wiley, New York

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. John Wiley, New York, p 1203

    Google Scholar 

  • Sharma SK, Datta A, Saud T, Mandal TK, Ahammed YN, Arya BC, Tiwari MK (2010a) Study on concentration of ambient NH3 and interactions with some other ambient trace gases. Environ Monit Asses 162:225–235

    Article  Google Scholar 

  • Sharma SK, Datta A, Saud T, Saxena M, Mandal TK, Ahammed YN, Arya BC (2010b) Seasonal variability of ambient NH3, NO, NO2 and SO2 over Delhi. J Environ Sci 22(7):1023–1028

    Article  Google Scholar 

  • Shenoy DM, Kumar DM, Sarma VVSS (2000) Control of dimethyl sulphide in the Bay of Bengal during BOBMEX-Pilot cruise 1998. Earth Planet Sci 109:279–283

    Google Scholar 

  • Shon ZH, Davis D, Chen G, Grodzinsky G, Bandy A, Thornton D, Sandholm S, Bradshaw J, Stickel R, Chameides W, Kok G, Russell L, Mauldin L, Tanner D, Eisele F (2001) Evaluation of the DMS flux and its conversion to SO2 over the southern ocean. Atmos Environ 35:159–172

    Article  Google Scholar 

  • Stelson AW, Seinfeld JH (1982) Relative humidity and pH dependence of the vapour pressure of ammonium nitrate-nitric acid and solutions at 25 degree Celsius. Atmos Environ 16:993–1000

    Article  Google Scholar 

  • Sturges WT, Barrie LA (1988) Chlorine, bromine and iodine in Arctic aerosols. Atmos Environ 22(6):1179–1194

    Article  Google Scholar 

  • Sutton MA, Place CJ, Eagar M, Fowler D, Smith RL (1995) Assessment of the magnitude of ammonia emissions in the United Kingdom. Atmos Environ 29:1393–1411

    Article  Google Scholar 

  • Sutton MA, Dragostis U, Tang YS, Flower D (2000) Ammonia emissions from non-agricultural sources in the UK. Atmos Environ 34:855–869

    Article  Google Scholar 

  • Teinila K, Kerminen VM, Hillamo R (2000) Study of size-segregated aerosol chemistry in the Antarctic atmosphere. J Geophys Res 105:3893–3904

    Article  Google Scholar 

  • Theobald MR, Crittenden PD, Hunt AP, Tang YS, Dragosits U, Sutton MA (2006) Ammonia emission from Cape fur seal colony, Cape Cross, Namibia. Geophys Res Lett 33:L03812. doi:10.1029/2005GL024384

  • Uematsu M, Torantini M, Kajino M, Narita Y, Senga Y, Kimoto T (2004) Enrichment of primary production in the western North Pacific caused by the eruption of Miyake-jima volcano. Geophys Res Lett 31:L06106. doi:10.1029/2003GL018790

  • Warneck P (1988) Chemistry of the natural atmosphere. International Geophysics, vol 41. Academic Press, New York, pp 313–326, 422–483

  • Zhuang L, Huebert BJ (1996) Lagrangian analysis of the total ammonia budget during Atlantic stratocumulus transition experiment/marine aerosol and gas exchange. J Geophys Res 101:4341–4350

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director and Head, RASD, CSIR-National Physical Laboratory, New Delhi, India, for their constant encouragement and support. The authors are also grateful to Director, Bose Institute, Kolkata, for agreeing to participate in the campaign. The authors acknowledge Indian Space Research Organization, Department of Space (ISRO/DOS) for financial support for participation in W_ICARB. One of the authors, T. Saud is thankful to CSIR for providing Senior Research Fellowship (SRF). AKS, SKG and SR thank Department of Science & Technology for support under IRHPA scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sharma.

Additional information

Responsible editor: J. Fasullo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.K., Singh, A.K., Saud, T. et al. Study on water-soluble ionic composition of PM10 and related trace gases over Bay of Bengal during W_ICARB campaign. Meteorol Atmos Phys 118, 37–51 (2012). https://doi.org/10.1007/s00703-012-0204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-012-0204-x

Keywords

Navigation