Skip to main content

Advertisement

Log in

Adsorption of Endotoxin from Aqueous Solution Using Bone Char

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The aim of this study is the removal of endotoxin from aqueous solution using bone char (BC) as an adsorbent material. The BC was prepared from cattle animal bone by pyrolysis in a furnace at 850°C. The morphology and physico-chemical characteristics of the adsorbent were investigated. Kinetic studies revealed that the adsorption of endotoxin is rapid. The adsorption mechanisms in the endotoxin-BC had a significant contribution from film diffusion. The maximum adsorption efficiency achieved is 98% at an adsorbent dose of 40 g L−1 with an initial endotoxin concentration of 80 Eu mL−1. The results show that the Langmuir isotherm adsorption equation model describe the experimental adsorption isotherm with good accuracy. A survey of the regeneration capabilities showed that the BC could be regenerated and rendered endotoxin free by heating at 350°C for 30 min. The results suggest that BC could be used as effective adsorbent for endotoxin removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson WB, Slawson RM, Mayfield CIA (2002) Review of drinking-water-associated endotoxin, including potential routes of human exposure. Can J Microbiol 48:567–587. doi:10.1139/w02-061

    Article  CAS  Google Scholar 

  • Anderson WB, Huch PM, Dixon DG (2003) Endotoxin inactivation in water by using medium-pressure UV lamp. Appl Environ Microbiol 69:3002–3004. doi:10.1128/AEM.69.5.3002-3004.2003

    Article  CAS  Google Scholar 

  • Anderson WB, Dixon DG, Mayfield CI (2007) Estimation of endotoxin inhalation from shower and humidifier exposure reveals potential risk to human health. J Water Health 5:553–572. doi:10.2166/wh.2007.043

    Article  CAS  Google Scholar 

  • ASTM (2003) D2972-88. Standard test method for GAC, vol 11, pp 396–405

  • ASTM D 4607 (1999) Standard test method for determination of iodine number of activated carbon

  • Castor ML, Wagstrom EA, Danila RN (2005) An outbreak of Pontiac fever with respiratory distress among workers performing high-pressure at a sugar-beet cleaning processing plant. J Infect Dis 191:1530–1537. doi:10.1086/428776

    Article  Google Scholar 

  • Cheung CW, Chan CK, Porter JF, McKay G (2001) Combined diffusion model for the sorption of cadmium, copper, and zinc ions onto bone char. Environ Sci Technol 35:1511–1522. doi:10.1021/es0012725

    Article  CAS  Google Scholar 

  • Choy KKH, McKay G (2005) Sorption of metal ions from aqueous solution using bone char. Environ Int 31:845–854. doi:10.1016/j.envint.2005.05.036

    Article  CAS  Google Scholar 

  • Danny CKK, Cheung CW, Choy KKH, Porter JF, McKay G (2004) Sorption equilibria of metal ions on bone char. Chemosphere 54:273–281. doi:10.1016/j.chemosphere.2003.08.004

    Article  Google Scholar 

  • Daus B, Wennrich R, Weiss H (2004) Sorption of materials for arsenic removal from water: a comparative study. Water Res 38:2948–2954. doi:10.1016/j.watres.2004.04.003

    Article  CAS  Google Scholar 

  • Hanora A, Plieva FM, Hedstrom M (2006) Capture of endotoxin using a supermacroporous monolithic matrix with immobilized polyethyleneimine, lysozyme or polymyxin B. J Biotechnol 118:421–433

    Article  Google Scholar 

  • Lalvani SB, Wiltowski T, Hubner A, Weston A, Mandich N (1998) Removal of hexavalent chromium and metal cations by a selective and novel carbon adsorbent. Carbon 36:1219–1225. doi:10.1016/S0008-6223(98)00102-X

    Article  CAS  Google Scholar 

  • Moreno-Castilla C, Carrasco-Marin F, Lpoez-Ramon M, Alvarez-Merino M (2001) Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon 39:1415–1420. doi:10.1016/S0008-6223(00)00268-2

    Article  CAS  Google Scholar 

  • Parida K, Parida KM, Satapathy PK, Das NN (1996) Studies on indian ocean manganese nodules: IV. adsorption of some bivalent heavy metal ions onto ferromanganese nodules. J Colloid Interface Sci 181:456–462. doi:10.1006/jcis.1996.0402

    Article  CAS  Google Scholar 

  • Poots VJP, McKay G, Healy JJ (1978) Removal of basic dye from effluent using wood as an adsorbent. J Water Pollut Control Fed 50:926–931

    CAS  Google Scholar 

  • Purevsuren B, Avid B, Narangerel J, Gerelmaa T, Davaajav YA (2004) Investigation on the pyrolysis products from animal bone. J Mater Sci 39:737–740. doi:10.1023/B:JMSC.0000011545.51724.ad

    Article  CAS  Google Scholar 

  • Sarantila R, Kangas J, Savolainen H (1999) Interlaboratory comparison of endotoxin analyses in occupational exposure. Bull Environ Contam Toxicol 62:25–29. doi:10.1007/s001289900836

    Article  CAS  Google Scholar 

  • Sarantila R, Reiman M, Kangas J, Husman K, Savolainen H (2001) Exposure to endotoxins and microbes in the treatment of waste water and in the industrial debarking of wood. Bull Environ Contam Toxicol 67:171–178. doi:10.1007/s001280107

    Article  CAS  Google Scholar 

  • Smiciklas ID, Milonjic SK, Pfendt P, Raicevic S (2000) The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Sep Purif Technol 18(2000):185–194. doi:10.1016/S1383-5866(99)00066-0

    Article  CAS  Google Scholar 

  • Smiciklas I, Dimovic S, Sljivic M, Plecas I (2008) The batch study of Sr2+ sorption by bone char. J Environ Sci Health Part A Environ Sci Health Part A Environ Sci Eng 43:210–217

    CAS  Google Scholar 

  • Szymanska J (2005) Endotoxin level as a potential marker of concentration of Gram-negative bacteria in water effluent from dental units and in dental aerosols. Ann Agric Environ Med 12:229–232

    CAS  Google Scholar 

  • Tessarolo F, Caola I, Nollo G (2006) Efficiency in endotoxin removal by a reprocessing protocol for electrophysiology catheters based on hydrogen peroxide plasma sterilization. Int J Hyg Environ Health 209:557–565. doi:10.1016/j.ijheh.2006.05.001

    Article  CAS  Google Scholar 

  • Tsai WT, Hsieh MF, Sun HF, Chien SF, Chen HP (2002) Adsorption of paraquat onto activated bleaching earth. Bull Environ Contam Toxicol 206:557–565

    Google Scholar 

  • Wanngah WS, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948. doi:10.1016/j.biortech.2007.06.011

    Article  CAS  Google Scholar 

  • Westphal O, Jann K (1965) Bacterial lipopolysaccharides. Extraction with phenol–water and further applications of the procedure. Methods Carbohydr Chem 5:83–91

    CAS  Google Scholar 

  • Xie W, Wang Q, Yao J, Ma H, Ohsumi Y, Ogawa HI (2004) Study on advanced treatment of secondary effluent using fixed-bed filled with bone char. Water Air Soil Pollut 159:313–324. doi:10.1023/B:WATE.0000049181.63852.98

    Article  CAS  Google Scholar 

  • Yu B, Zhang Y, Shukla A, Shukla S, Dorris KL (2001) The removal of heavy metals from aqueous solutions by sawdust adsorption removal of lead and comparison of its adsorption with Koper. J Hazard Mater 84:83–94. doi:10.1016/S0304-3894(01)00198-4

    Article  CAS  Google Scholar 

  • Zhang Y, Yang H, Zhou K, Ping Z (2007) Synthesis of affinity adsorbent based on silica gel and its application in endotoxin removal. React Funct Polym 67:728–736. doi:10.1016/j.reactfunctpolym.2007.05.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The researchers would like to acknowledge funding support by the Tarbiat Modares university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rezaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaee, A., Ghanizadeh, G., Behzadiyannejad, G. et al. Adsorption of Endotoxin from Aqueous Solution Using Bone Char. Bull Environ Contam Toxicol 82, 732–737 (2009). https://doi.org/10.1007/s00128-009-9690-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-009-9690-z

Keywords

Navigation