Skip to main content
Log in

Comparative Effects of Technical-Grade and a Commercial Formulation of Glyphosate on the Pigment Content of Periphytic Algae

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

We investigated the potentially different effects of one of the most commonly used glyphosate formulations in Argentina, Glifosato Atanor®, and the technical-grade glyphosate on the pigment content, as biomass indicators of the algal fraction in a freshwater periphytic community. A laboratory bioassay was carried out in 250-ml beakers. Two treatments were used: technical-grade glyphosate acid and Glifosato Atanor® (isopropylamine salt of glyphosate 48 % w/v), which were at a concentration of 3 mg active ingredient per liter. Treatments and the control (without herbicide) were replicated in triplicate. The concentrations of chlorophyll a and b and carotenes were determined at 0, 2, 6, 10, 24, 48, 96 and 192 h after herbicide addition. A significant increase in pigment content was observed for both herbicides after a 2-day exposure. Moreover, the formulation had little or no effect compared to the active ingredient, suggesting that the additives of Glifosato Atanor® may not enhance glyphosate toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Berkovic A, Marino D, Lespade P, Ronco A (2006) Análisis de pesticidas asociados al cultivo de soja en aguas y sedimentos de un sector productivo de la pampa ondulada. Anales XXVI Congreso Argentino de Química, San Luis, 8–053

  • CASAFE (2013) Mercado Argentino de Productos Fitosanitarios 2013. Cámara de Sanidad Agropecuaria y Fertilizantes, Buenos Aires

    Google Scholar 

  • Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol 49:443–456

    Article  CAS  Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup® herbicide. Rev Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Holtby LB, Baillie SJ (1989) Effects of the herbicide Roundup (glyphosate) on periphyton in Carnation Creek, British Columbia. In: Reynolds PE (ed) Proceedings of the Carnation Creek Herbicide Workshop, Forestry Canada, Canada, pp 224–231

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kish PA (2006) Evaluation of herbicide impact on periphyton community structure using the Matlock periphytometer. J Freshw Ecol 21:341–348

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:349–382

    Google Scholar 

  • Lipok J, Studnik H, Gruyaert S (2010) The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs. Ecotoxicol Environ Saf 73:1681–1688

    Article  CAS  Google Scholar 

  • Öncel I, Keleş Y, Üstün AS (2000) Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environ Pollut 107:315–320

    Article  Google Scholar 

  • Pérez GL, Torremorell A, Mugni H, Rodríguez P, Vera MS, do Nascimento M, Allende L, Bustingorry J, Escaray R, Ferraro M, Izaguirre I, Pizarro H, Bonetto C, Morris DP, Zagarese H (2007) Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecol Appl 17:2310–2322

    Article  Google Scholar 

  • Peterson HG, Boutin C, Martin PA, Freemark KE, Ruecker NJ, Moody MJ (1994) Aquatic phytotoxicity of 23 pesticides applied at expected environmental concentrations. Aquat Toxicol 28:275–292

    Article  CAS  Google Scholar 

  • Pintilie M, Oprica L, Surleac M, Dragut Ivan C, Creanga DE, Artenie V (2006) Enzyme activity in plants treated with magnetic liquid. Rom J Phys 51:239–244

    CAS  Google Scholar 

  • Powell HA, Kerby NW, Rowell P (1991) Natural tolerance of cyanobacteria to the herbicide glyphosate. New Phytol 119:421–426

    Article  CAS  Google Scholar 

  • Romero DM, Ríos de Molina MC, Juárez AB (2011) Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri. Ecotoxicol Environ Saf 74:741–747

    Article  CAS  Google Scholar 

  • Sáenz ME, Di Marzio WD (2009) Ecotoxicidad del herbicida glifosato sobre cuatro algas clorófitas dulceacuícolas. Limnetica 28:149–158 (in Spanish)

    Google Scholar 

  • Sáenz ME, Di Marzio WD, Alberdi JL, Tortorelli MC (1997) Effects of technical grade and a commercial formulation of glyphosate on algal population growth. Bull Environ Contam Toxicol 59:638–644

    Article  Google Scholar 

  • Samuel K, Bose S (1987) Bleaching of photosyntethic pigments in Chlorella protothecoides grown in the presence of SANDOZ 9785 (4-chloro-5-dimethylamino-2 phenyl-3 (2H) pyridazinone). J Biosci 12:399–404

    Article  CAS  Google Scholar 

  • Schönbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N, Evans JNS, Kabsch W (2001) Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. PNAS 98:1376–1380

    Article  Google Scholar 

  • Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197

    Article  CAS  Google Scholar 

  • Tukaj S, Tujaj Z (2010) Distinct chemical contaminants induce the synthesis of Hsp70 proteins in green microalgae Desmodesmus subspicatus: heat pretreatment increases cadmium resistance. J Therm Biol 35:239–244

    Article  CAS  Google Scholar 

  • Vera MS, Lagomarsino L, Sylvester M, Pérez G, Rodríguez P, Mugni H, Sinistro R, Ferraro M, Bonetto C, Zagarese H, Pizarro H (2010) New evidences of Roundup® (glyphosate formulation) impact on the periphyton and the water quality of freshwater ecosystems. Ecotoxicology 19:710–721

    Article  CAS  Google Scholar 

  • Vera MS, Di Fiori E, Lagomarsino L, Sinistro R, Escaray R, Iummato MM, Juárez A, Ríos de Molina MC, Tell G, Pizarro H (2012) Direct and indirect effects of the glyphosate formulation Glifosato Atanor® on freshwater microbial communities. Ecotoxicology 21:1805–1816

    Article  CAS  Google Scholar 

  • Zhu Y, Zhang F, Tong C, Liu W (1999) Determination of glyphosate by ion chromatography. J Chromatogr A 850:297–301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eugenia Di Fiori for field assistance and to the Associated Editor of the Journal for improving the manuscript. This work was supported by ANPCyT (PICT 2010-0908) and UBACyT O1/W550.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María S. Vera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vera, M.S., Juárez, Á.B. & Pizarro, H.N. Comparative Effects of Technical-Grade and a Commercial Formulation of Glyphosate on the Pigment Content of Periphytic Algae. Bull Environ Contam Toxicol 93, 399–404 (2014). https://doi.org/10.1007/s00128-014-1355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-014-1355-x

Keywords

Navigation