Skip to main content

Advertisement

Log in

A case study of the internal structures of gossans and weathering processes in the Iberian Pyrite Belt using magnetic fabrics and paleomagnetic dating

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

In the Rio Tinto district of the Iberian Pryrite Belt of South Spain, the weathering of massive sulfide bodies form iron caps, i.e., true gossans and their subsequent alteration and re-sedimentation has resulted in iron terraces, i.e., displaced gossans. To study the stucture and evolution of both types of gossans, magnetic investigations have been carried out with two foci: (1) the characterisation and spatial distribution of magnetic fabrics in different mineralised settings, including massive sulfides, gossans, and terraces, and (2) paleomagnetic dating. Hematite has been identified as the suceptibility carrier in all sites and magnetic fabric investigation of four gossans reveals a vertical variation from top to bottom, with: (1) a horizontal foliation refered to as “mature” fabric in the uppermost part of the primary gossans, (2) highly inclined or vertical foliation interpreted as “immature” fabric between the uppermost and lowermost parts, and (3) a vertical foliation interpreted to be inherited from Hercynian deformation in the lowermost part of the profiles. In terraces, a horizontal foliation dominates and is interpreted to be a “sedimentary” fabric. Rock magnetic studies of gossan samples have identified goethite as the magnetic remanence carrier for the low-temperature component, showing either a single direction close to the present Earth field (PEF) direction or random directions. Maghemite, hematite, and occasionally magnetite are the remanence carriers for the stable high-temperature component that is characterized by non PEF directions with both normal and reversed magnetic polarities. No reliable conclusion can be yet be drawn on the timing of terrace magnetization due to the small number of samples. In gossans, the polarity is reversed in the upper part and normal in the lower part. This vertical distribution with a negative reversal test suggests remanence formation during two distinct periods. Remanence in the upper parts of the gossans is older than in the lower parts, indicating that the alteration proceeded from top to bottom of the profiles. In the upper part, the older age and the horizontal “mature” fabric is interpreted to be a high maturation stage of massive sulfides’ alteration. In the lower part, the age is younger and the inherited “imature” vertical Hercynian fabric indicates a weak maturation stage. These two distinct periods may reflect changes of paleoclimate, erosion, and/or tectonic motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abad I, Nieto F, Velilla N (2001) The phyllosilicates in diagenetic–metamorphic rocks of the South Portuguese Zone, Southwestern Portugal. Can Miner 39:1571–1589

    Article  Google Scholar 

  • Al TA, Leybourne MI, Maprani AC, MacQuarrie KT, Dalziel JA, Fox D, Yeats PA (2006) Effects of acid-sulfate weathering and cyanide-containing gold tailings on the transport and fate of mercury and other metals in Gossan Creek: Murray Brook mine, New Brunswick, Canada. Appl Geochem 21:1969–1985

    Article  Google Scholar 

  • Alegret L, Cruz L, Fenero R, Molina E, Ortiz S, Thomas E (2008) Effects of the Oligocene climatic events on the foraminiferal record from Fuente Caldera section (Spain, western Tethys). Palaeogeogr Palaeocl 269:94–102

    Article  Google Scholar 

  • Assiri A, Mousa H (2008) Using ASTER imagery for massive sulphide deposits exploration. Microwaves, Radar and Remote Sensing Symposium SBN: 978-1-4244-2688-1:300–303

  • Atapour H, Aftabi A (2007) The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for exploration and the environment. J Geochem Explor 93:47–65

    Article  Google Scholar 

  • Besse J, Courtillot V (2002) Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr J Geophys Res 107: doi:10.1029/2000JB000050

  • Borradaile GJ, Tarling DH (1981) The influence of deformation mechanisms on magnetic fabrics in weakly deformed rocks. Tectonophysics 77:151–168

    Article  Google Scholar 

  • Bouillin JP, Bouchez JL, Lespinasse P, Pecher A (1993) Granite emplacement in an extensional setting: an AMS study of the magmatic structures of Monte Capanne (Elba, Italy). Earth Planet Sci Lett 118:263–279

    Article  Google Scholar 

  • Boyle DR (1995) Geochemistry and genesis of the Murray Brook precious metal gossan deposit, Bathurst Mining Camp, New Brunswick. Explor Min Geol 4:341–363

    Google Scholar 

  • Capitán A, Nieto JM, Sáez R, Almodóvar GR (2003) Caracterización textural y mineralógica del gossan del Filón Sur (Tharsis, Huelva). Bol Soc Esp Musicol 26:45–58

    Google Scholar 

  • Chadima M, Jelínek V (2008) Anisoft 4.2. – Anisotropy data browser. In: Milan Hvožďara (ed) Paleo, Rock and Environmental Magnetism, 11th Castle Meeting, Contribution to Geophysics and Geodesy, Special issue. Geophysical Institute of the Slovak Academy of Sciences, Bojnice Castle, Slovac Republic, p 41

    Google Scholar 

  • Charreau J, Chen Y, Gilder S, Dominguez S, Avouac J, Sen S, Sun D, Li Y, Wang W (2005) Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): implications for Late Cenozoic uplift of the Tianshan mountains. Earth Planet Sci Lett 230:177–192

    Article  Google Scholar 

  • Cogné JP (2003) PaleoMac: a Macintosh™ application for treating paleomagnetic data and making plate reconstructions. Geochem Geophys Geosyst 4(1):1007. doi:10.1029/2001GC000227

    Article  Google Scholar 

  • De Man E, Van Simaeys S (2004) Late Oligocene warming event in the southern North Sea Basin: benthic foraminifera as paleotemperature proxies. Neth J Geosci 83:227–239

    Google Scholar 

  • Dekkers MJ (1990) Magnetic monitoring of pyrrohotite alteration during thermal demagnetization. Geophys Res Lett 17:779–782

    Article  Google Scholar 

  • Dekkers MJ, Mattei JL, Fillion G, Rochette P (1989) Grain-size dependence of the magnetic behavior of pyrrhotite during its low temperature transition at 34 K. Geophys Res Lett 16:855–858

    Article  Google Scholar 

  • Duggen S, Hoernle K, Van Den Bogaard P, Rüpke L, PhippsMorgan J (2003) Deep roots of the Messinian salinity crisis. Nature 422:602–606

    Article  Google Scholar 

  • Duggen S, Hoernle K, van den Bogaard P, Harris C (2004) Magmatic evolution of the Alboran region: the role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis. Earth Planet Sci Lett 218:91–108

    Article  Google Scholar 

  • Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, New York

    Book  Google Scholar 

  • Egal M, Elbaz-Poulichet F, Casiot C, Motelica-Heino M, Négrel P, Bruneel O, Sarmiento A, Nieto J (2008) Iron isotopes in acid mine waters and iron-rich solids from the Tinto-Odiel Basin (Iberian Pyrite Belt, Southwest Spain). Chem Geol 253:162–171

    Article  Google Scholar 

  • Essalhi M, Sizaret S, Barbanson L, Chen Y, Branquet Y, Panis D, Camps P, Rochette P, Canals A (2009) Track of fluid paleocirculation in dolomite host rock at regional scale by the Anisotropy of Magnetic Susceptibility (AMS): an example from Aptian carbonates of La Florida, Northern Spain. Earth Planet Sci Lett 277:501–513

    Article  Google Scholar 

  • Evans MA, Lewchuk MT, Elmore RD (2003) Strain partitioning of deformation mechanisms in limestones: examining the relationship of strain and anisotropy of magnetic susceptibility (AMS). J Struct Geol 25:1525–1549

    Article  Google Scholar 

  • Fisher RA (1953) Dispersion of a sphere. Proc Roy Soc Lond A217:295–305

    Google Scholar 

  • González F, Moreno C, Sáez R, Clayton G (2002) Ore genesis age of the Tharsis Mining District (Iberian Pyrite Belt): a palynological approach. J Geol 159:229–232

    Article  Google Scholar 

  • Guyodo Y, LaPara TM, Anschutz AJ, Penn RL, Banerjee SK, Geiss CE, Zannert W (2006) Rock magnetic, chemical and bacterial community analysis of a modern soil from Nebraska. Earth Planet Sci Lett 251:168–178

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  Google Scholar 

  • Henry B, Le Goff M (1995) Application de l’extension bivariate de la statistique Fisher aux données d’anisotropie de susceptibilité magnétique: intégration des incertitudes de mesure sur l’orientation des directions principales. Acad Sc Paris 320:1037–1042

    Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82

    Article  Google Scholar 

  • Hsü KJ, Ryan WBF, Cita MB (1973) Late Miocene desiccation of the Mediterranean. Nature 242:240–244

    Article  Google Scholar 

  • Jébrak M, Marcoux E (2008) Géologie des ressources minérales. Québec ed. Ministère des ressources naturelles et de la faune, Québec; 667 p

  • Jelínek V (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Stud Geophys Geod 22:50–62

    Article  Google Scholar 

  • Jover O, Rochette P, Lorand JP, Maeder M, Bouchez JL (1989) Magnetic mineralogy of some granites from the French Massif Central: origin of their low-field susceptibility. Phys Earth Planet Inter 55:79–92

    Article  Google Scholar 

  • Kirschvink J (1980) The least squares line and the analysis of paleoamgnetic data. Geophys J R Astron Soc 62:699–718

    Google Scholar 

  • Kosakevitch A (1979) Chapeaux de fer : problème de définition et de nomenclature pratique. Bulletin du BRGM Section II:141–149

  • Kosakevitch A, García Palomero F, Leca X, Leistel JM, Lenotre N, Sobol F (1993) Contrôles climatique et geéomorphologique de la concentration de l’or dans les chapeaux de fer de Río Tinto (Province de Huelva, Espagne). CR Acad Sci Paris 316–II:85–90

    Google Scholar 

  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655

    Article  Google Scholar 

  • Le Borgne E (1955) Susceptibilité magnétique anormale du sol superficiel. Ann Geophys 11:399–419

    Google Scholar 

  • Leblanc M, Morales JA, Borrego J, Elbaz-Poulichet F (2000) 4.500-year-old mining pollution in southwestern Spain: long-term implications for modern mining pollution. Econ Geol 95:655–662

    Article  Google Scholar 

  • Lécolle M (1972) Successions lithologiques et stratigraphiques dans la Province de Huelva Espagne; position des minéralisations magnésifères et pyriteuses. CR Acad Sci Paris 274:505–508

    Google Scholar 

  • Leistel JM, Marcoux E, Thiéblemont D, Quesada C, Sánchez A, Almodóvar GR, Pascual E, Sáez R (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt: review and preface to the Thematic Issue. Miner Deposita 33:2–30

    Article  Google Scholar 

  • Marcoux E, Leistel JM (1996) Mineralogy and Geochemistry of massive sulphide deposits. Iberian Pyrite Belt Bol Geol Min 107:3–4

    Google Scholar 

  • Marcoux E, Moëlo Y, Leistel JM (1996) Bismuth and cobalt minerals as indicators of stringer zones to massive sulphide deposits, Iberian Pyrite Belt. Miner Deposita 31:1–26

    Article  Google Scholar 

  • Mathé P, Rochette P, Vandamme D, Colin F (1999) Volumetric changes in weathered profiles: iso-element mass balance method questioned by magnetic fabric. Earth Planet Sci Lett 167:255–267

    Article  Google Scholar 

  • Mathur R, Ruiz J, Tornos F (1999) Age and sources of the ore at Tharsis and Rio Tinto, Iberian Pyrite Belt, from Re-Os isotopes. Miner Deposita 34:790–793

    Article  Google Scholar 

  • McFadden PL, McElhinny MW (1990) Classification of the reversal test in Paleomagnetism. Geophys J Int 103:725–729

    Article  Google Scholar 

  • Moreno C (1993) Postvolcanic Paleozoic of the Iberian Pyrite Belt: an example of basin morphologic control on sediment distribution in a turbidite basin. J Sediment Petrol 63:1118–1128

    Google Scholar 

  • Moreno C, Sierra S, Sáez R (1996) Evidence for catastrophism at the Famennian–Dinantian boundary in the Iberian Pyrite Belt. In: Strogen P, Somerville D, Jones GLl (eds), “Recent Advances in Lower Carboniferous Geology” Geological Society Special Publication, 107:153–62

  • Moreno C, Capitán MA, Doyle M, Nieto JM, Ruiz F, Sáez R (2003) Edad mínima del gossan de Las Cruces: implicaciones sobre la edad del inicio de los ecosistemas extremos en la Faja Pirítica Ibérica. Geogaceta 33:67–70

    Article  Google Scholar 

  • Mosbrugger V, Utescher T, Dilcher D (2005) Cenozoic continental climatic evolution of Central Europe. Proc Natl Acad Sci (PNAS) 102:14964–14969

    Article  Google Scholar 

  • Munhá J (1979) Blue amphiboles, metamorphic regime and plate tectonic modelling in the Iberian Pyrite Belt. Contrib Miner Petrol 69:279–289

    Article  Google Scholar 

  • Munhá J (1990) Metamorphic evolution of the south Portuguese/Pulo do Lobo zone. In: Dallmeyer R, Martinez Garcia E (eds) Pre-Mesozoic evolution of Iberia. Springer, Berlin, pp 363–368

    Google Scholar 

  • Nieto JM, Almodóvar GR, Pascual E, Sáez R, Jagoutz E (1999) Estudio isotópico con el sistema Re-Os de las mineralizaciones de sulfuros de la Faja Pirítica Ibérica. Geogaceta 27:181–184

    Google Scholar 

  • Nieto JM, Capitán MA, Sáez R, Almodóvar GR (2003) Beudantite: a natural sink for As and Pb in sulphide oxidation processes. Appl Earth Sci (Trans Inst Min Metall B) 112:293–296

    Article  Google Scholar 

  • Nomade S, Theveniaut H, Chen Y, Pouclet A, Rigollet C (2000) Paleomagnetic study of French Guyana Early Jurassic dolerites: hypothesis of a multistage magmatic event. Earth Planet Sci Lett 184:155–168

    Article  Google Scholar 

  • O’Reilly W (1984) Rock and mineral magnetism. Blackie, Glasgow, p 230

    Google Scholar 

  • Oliveira JT (1990) South Portuguese Zone: introduction. Stratigraphy and syn-sedimentary tectonism in the South Portuguese Zone. In: Dallmeyer RD, Garcia EM (eds) Pre-Mesozoic Geology of Iberia. Springer, Berlin, pp 333–347

    Google Scholar 

  • Onézime J, Charvet J, Faure M, Chauvet A, Panis D (2002) Structural evolution of the southernmost segment of the West European Variscides: the South Portuguese Zone (SW Iberia). J Struct Geol 24:451–468

    Article  Google Scholar 

  • Osete ML, Rey D, Villalain JJ, Juarez MT (1997) The Late Carboniferous to Late Triassic segment of the apparent polar wander path of Iberia. Geol Mijnbouw 76:05–119

    Google Scholar 

  • Özdemir Ö, Banerjee S (1982) A preliminary study of soil samples from west-central Minnesota. Earth Planet Sci Lett 59:393–403

    Article  Google Scholar 

  • Özdemir Ö, Dunlop DJ, Moskowitz BM (1993) The effect of oxidation of the Verwey transition in magnetite. Geophys Res Lett 20:1671–1674

    Article  Google Scholar 

  • Park CF, MacDiarmid RA (1964) Ore deposits. Freeman W.H, San Francisco

    Google Scholar 

  • Phillips JA (1881) Occurrence of remains of recent plants in brown iron ore (Río Tinto). Q J Geol Soc London 37:1–5

    Article  Google Scholar 

  • Quesada C (1998) A reappraisal of the structure of the spanish segment of the Iberian Pyrite Belt. Miner Deposita 33:31–44

    Article  Google Scholar 

  • Quesada C, Bellido F, Dallmeyer RD, Gil Ibarguchi I, Oliveira JT, Pérez Estaún A, Ribeiro A, Robardet M, Silva JB (1991) Terranes within the Iberian Massif: correlations with West African sequences. In: Dallmeyer R (ed) The West African orogens and Circum-Atlantic Correlations. Springer, Berlin, pp 267–294

    Google Scholar 

  • Ribeiro A, Silva JB (1983) Structure of the South Portuguese Zone. In Lemos de Sousa MJ, Oliveira JT (ed) The Carboniferous of Portugal. Memoria Servicos Geológicos de Portugal, pp 83–89

  • Rochette P, Fillion G, Mattéi J, Dekkers MJ (1990) Magnetic transition at 30–34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks. Earth Planet Sci Lett 98:319–328

    Article  Google Scholar 

  • Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of the anisotropy of magnetic susceptibility. Rev Geophys 30:209–226

    Article  Google Scholar 

  • Rosenbaum G, Gordon SL, Duboz D (2002) Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359:117–129

    Article  Google Scholar 

  • Routhier P, Aye F, Boyer C, Lecolle M, Moliere P, Picot P, Roger G (1980) La ceinture sud-iberique à amas sulfurés dans sa partie espagnole médiane. Mém BRGM 92:265

    Google Scholar 

  • Sáez R, Almodovar GR, Pascual E (1996) Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt. Ore Geol Rev 11:429–451

    Article  Google Scholar 

  • Sáez R, Pascual E, Toscano M, Almodovar GR (1999) The Iberian type of volcano-sedimentary massive sulphide deposits. Miner Deposita 34:549–570

    Article  Google Scholar 

  • Sáez R, Nocete F, Nieto JM, Capitán MA, Rovira S (2003) The extractive metallurgy of copper from Cabezo Juré, Huelva, Spain: Chemical and mineralogical study of slags dated to the Third Millenium B.C. Can. Mineralogist 41:627–638

    Article  Google Scholar 

  • Sáez R, Moreno C, González F (2008) Synchronous deposition of massive sulphide deposits in the Iberian Pyrite Belt: New data from Las Herrerías and La Torerera ore-bodies. CR Geosci 340:829–839

    Article  Google Scholar 

  • Schermerhorn LJG (1971) An outline stratigraphy of the Iberian Pyrite Belt. Bol Geol Min 82:238–268

    Google Scholar 

  • Schermerhorn LJG, Stanton WI (1969) Folded overthrusts at Aljustrel. Geol Mag 106:130–141

    Article  Google Scholar 

  • Schott JJ, Peres A (1988) Palaeomagnetism of Permo-Triassic red beds in the western Pyrenees: evidence for strong clockwise rotations of the Palaeozoic unit. Tectonophysics 156:75–88

    Article  Google Scholar 

  • Scott KM, Ashley PM, Lawie DC (2001) The geochemistry, mineralogy and maturity of gossans derived from volcanogenic Zn–Pb–Cu deposits of the eastern Lachlan Fold Belt, NSW, Australia. J Geochem Explor 72:169–191

    Article  Google Scholar 

  • Silva J, Oliveira J, Ribeiro A (1990) Structural outline of the south Portuguese zone. In: Dallmeyer R, Martinez, García E (eds) Pre-Mesozoic Geology of Iberia. Springer, New York, pp 348–362

    Google Scholar 

  • Sizaret S, Chen Y, Marcoux E, Touray J-C (2001) Anisotropie de susceptibilité magnétique (ASM) et chimie des traces: une nouvelle méthodologie pour démêler processus hydrothermaux et supergènes. Application au gisement à Ba-Fe-F de Chaillac (Indre, France). CR Acad Sci Paris Earth Planet Sci 332:431–437

    Google Scholar 

  • Sizaret S, Chen Y, Chauvet A, Marcoux E, Touray JC (2003) Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba–F–Fe deposits (France). Earth Planet Sci Lett 206:555–570

    Article  Google Scholar 

  • Sizaret S, Chen Y, Barbanson L, Camps P, Henry B, Marcoux E (2006a) Crystallisation in flow Part I: paleo-circulation track by texture analysis and magnetic fabrics. Geophys J Int 167:605–612

    Article  Google Scholar 

  • Sizaret S, Fedioun I, Barbanson L, Chen Y (2006b) Crystallisation in flow Part II: modelling crystal growth kinetics controlled by boundary layer thickness. Geophys J Int 167:1027–1034

    Article  Google Scholar 

  • Sizaret S, Branquet Y, Gloaguen E, Chauvet A, Barbanson L, Arbaret L, Chen Y (2009) Estimating the local paleo-fluid flow velocity: new textural method and application to metasomatism. Earth Planet Sci Lett 280:71–82

    Article  Google Scholar 

  • Soriano C (1996) Tectonica del cabalgamientos en la Faja Piritica Iberica (Zona Sur Portuguesa): la lamina de cabalgamientode Sanlucar de Guadiana y el antiform de Puebla de Guzman. Geogaceta 20:786–788

    Google Scholar 

  • Symons DTA, Lewchuk MT, Boyle DR (1996) Pliocene–Pleistocene genesis for the Murray Brook and Heath Steele Au–Ag gossan ore deposits, New Brunswick, from paleomagnetism. Can J Earth Sci 33(1):1–11

    Article  Google Scholar 

  • Symons DT, Lewchuk MT, Kawasaki K, Velasco F, Leach DL (2009) Dating of the Reocin MVT Deposit, Spain, by Paleomagnetism. Miner Deposita 44:867–880

    Article  Google Scholar 

  • Talbot JY, Faure M, Chen Y, Martelet G (2005) Pull-apart emplacement of the Margeride granitic complex (French Massif Central). Implications for the late evolution of the Variscan orogen. J Struct Geol 27:1610–1629

    Article  Google Scholar 

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London, p 217

    Google Scholar 

  • Théveniaut H, Freyssinet P (1999) Paleomagnetism applied to lateritic profiles to assess saprolite and duricrust formation processes: the example of Mont Baduel profile (French Guiana). Palaeogeogr Palaeoclim 148:209–231

    Article  Google Scholar 

  • Tornos F (2006) Environment of formation and styles of volcanogenic massive sulphides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307

    Article  Google Scholar 

  • Van den Boogaard MV (1963) Conodonts of the upper devonian and lower carboniferous age from southern Portugal. Geol Mijnbouw 42:248–259

    Google Scholar 

  • Viallefond L (1994) Cluster analysis on geochemical results from gossans. In: Leistel JM, Bonijoly D, Braux C, Freyssinet P, Kosakevitch A, Leca X, Lescuyer JL, Marcoux E, Milési JP, Piantone P, Sobol F, Tegyey M, Thiéblemont D, Viallefond L (eds) The massive sulphide deposits of the South Iberian Pyrite Province: geological setting and exploration criteria. BRGM, France, pp 109–229

    Google Scholar 

  • Wilhelm E, Kosakevitch A (1978) Chapeaux de fer. Rapport BRGM “Valorisation des ressources du sous-sol” 78SGN710MGA

  • Wilhelm E, Kosakevitch A (1979) Utilisation des chapeaux de fer comme guide de prospection. Bulletin du BRGM section II:109–140

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zijderveld JDA (1967) A.C. demagnetization of rocks: analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in paleomagnetism. Elsevier, Amsterdam, pp 254–286

    Google Scholar 

Download references

Acknowledgments

We present our thanks to David Symons, Fernando Tornos, Patrick Wiliams, and an anonymous reviewer for their constructive suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislas Sizaret.

Additional information

Editorial handling: F. Tornos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essalhi, M., Sizaret, S., Barbanson, L. et al. A case study of the internal structures of gossans and weathering processes in the Iberian Pyrite Belt using magnetic fabrics and paleomagnetic dating. Miner Deposita 46, 981–999 (2011). https://doi.org/10.1007/s00126-011-0361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-011-0361-8

Keywords

Navigation