Skip to main content
Log in

Magma mixing and magmatic-to-hydrothermal fluid evolution revealed by chemical and boron isotopic signatures in tourmaline from the Zhunuo–Beimulang porphyry Cu-Mo deposits

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

We present coupled textural, elemental, and boron isotopic data of tourmaline from the large Zhunuo–Beimulang collision-related porphyry copper deposits (PCDs) located within the western Gangdese, Tibet. Based on morphology and high-resolution mapping, the tourmaline is classified into three paragenetic generations. The first generation of schorlitic Tur-1 occurs in the monzogranite porphyry as disseminations intergrown with porphyritic K-feldspar and plagioclase. It shows decreasing Fe and Ca and increasing Mg and Al contents from core to rim and has relatively homogeneous δ11B values (− 9.9 to − 8.6‰); low Fe3+/(Fe2+  + Fe3+), Cu, F, H2O, and Sr/Y ratios; and high rare earth elements. These features indicate Tur-1 formed in a low fO2 and metal-poor granitic magma during the pre-mineralization stage. The second generation of porphyritic euhedral Tur-2 is hosted in diorite porphyry enclaves and dikes, where it is intergrown with plagioclase and biotite. It forms part of the schorl-dravite solid solution, with high Fe3+/(Fe2+  + Fe3+), Cu, F, H2O, Sr/Y, and δ11B (− 9.7 to − 5.1‰) values. These features indicate it crystallized from a hydrous, oxidized, metal-, and volatile-rich diorite magma. The third generation of Tur-3 is the most volumetrically important and occurs as veinlets and disseminations in the porphyry, or around Tur-1 and Tur-2. It shows radial and oscillatory zoning and is locally intergrown with chalcopyrite and pyrite within the main mineralization assemblage. It has δ11B values (− 10.5 to − 6.0‰) that overlap with Tur-1 and Tur-2 values. Tur-3 also has variable Fe3+/(Fe2+  + Fe3+), Cu, and volatiles (F and H2O), indicating it crystallized from oxidized to relatively reducing metal- and volatile-rich hydrothermal fluids. Overall, the three generations of tourmaline show a narrow range of δ11B values between − 10.5 and − 5.1‰ that are indicative of a single magmatic source. The high Cu, ferric iron, volatiles, and δ11B values in Tur-2 are interpreted to reflect injection of diorite magma into an open crustal magma storage system that led to the formation of an oxidizing and metal-volatile-rich porphyry system. The three stages of tourmaline formation reflect evolution of the magmatic–hydrothermal system from low fO2 conditions towards more oxidizing, volatile-rich conditions and then a return to more reducing conditions that accompanied Cu precipitation. Overall, the injection of oxidized metal-rich magma into a long-lived magma reservoir is a critical driving force for the development of collision-related PCDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Audétat A, Simon AC (2012) Magmatic controls on porphyry copper genesis. Geology and genesis of major copper deposits and districts of the world-A tribute to Richard H. Sillitoe, pp 553–572

  • Bachmann O, Bergantz G (2008) The magma reservoirs that feed supereruptions. Elements 4(1):17–21

    Article  ADS  Google Scholar 

  • Beckett-Brown CE, McDonald AM, McClenaghan MB (2023) Trace element characteristics of tourmaline in porphyry Cu systems: development and application to discrimination. Canadian J Mineral Petrol 61(1):31–60

    Article  CAS  Google Scholar 

  • Blundy J, Mavrogenes J, Tattitch B, Sparks S, Gilmer A (2015) Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs. Nat Geosci 8(3):235–240

    Article  ADS  CAS  Google Scholar 

  • Cao M, Evans NJ, Hollings P, Cooke DR, McInnes BI, Qin K, Li G (2018) Phenocryst zonation in porphyry-related rocks of the Baguio district, Philippines: evidence for magmatic and metallogenic processes. J Petrol 59(5):825–848

    Article  ADS  CAS  Google Scholar 

  • Cao K, Yang ZM, White NC, Hou ZQ (2022) Generation of the giant porphyry Cu-Au deposit by repeated recharge of mafic magmas at Pulang in Eastern Tibet. Econ Geol 117(1):57–90

    Article  Google Scholar 

  • Černý P, Blevin PL, Cuney M, London D (2005) Granite-related ore deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JR (eds) Econ Geol - One Hundredth Anniversary Volume, pp 337–370

  • Chen X, Jiang S, Palmer MR, Schertl HP, Cambeses A, Hernández-Uribe D, Zhao KD, Lin CG, Zheng Y (2023) Tourmaline chemistry, boron, and strontium isotope systematics trace multiple melt–fluid–rock interaction stages in deeply subducted continental crust. Geochim Cosmochim Ac 340:120–140

    Article  ADS  CAS  Google Scholar 

  • Chen X, Zheng Y, Gao S, Wu S, Jiang X, Jiang J, Lin C (2020) Ages and petrogenesis of the late Triassic andesitic rocks at the Luerma porphyry Cu deposit, western Gangdese, and implications for regional metallogeny. Gondwana Res 85:103–123

    Article  ADS  CAS  Google Scholar 

  • Chen X, Schertl HP, Hart E, Majka J, Cambeses A, Hernández-Uribe D, Zheng Y (2022) Mobilization and fractionation of Ti-Nb-Ta during exhumation of deeply subducted continental crust. Geochim Cosmochim Ac 319:271–295

    Article  ADS  CAS  Google Scholar 

  • Chiaradia M, Schaltegger U, Spikings R, Wotzlaw JF, Ovtcharova M (2013) How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems? Econ Geol 108(4):565–584

    Article  CAS  Google Scholar 

  • Chiaradia M (2015) Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective. Sci Rep-UK 5(1):1–5

    Google Scholar 

  • Chu MF, Chung SL, Song B, Liu D, O’Reilly SY, Pearson NJ, Wen DJ (2006) Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 34(9):745–748

    Article  ADS  CAS  Google Scholar 

  • Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100(5):801–818

    Article  CAS  Google Scholar 

  • Cooke DR, Hollings P, Wilkinson JJ, Tosdal RM (2014) Geochemistry of porphyry deposits. Treatise on Geochemistry (Second Ed) 13:357–381

    Article  CAS  Google Scholar 

  • Dou X, Lin Y, Jiang Z, Yu Z, Yi J, Huang L, Zheng Y (2021) Linking a fractionated magmatic system to skarn W-Mo mineralization in the Hahaigang deposit, Tibet: implications for regional tungsten metallogeny and exploration. Ore Geol Rev 139:104558

    Article  Google Scholar 

  • Duchoslav M, Marks MA, Drost K, McCammon C, Marschall HR, Wenzel T, Markl G (2017) Changes in tourmaline composition during magmatic and hydrothermal processes leading to tin-ore deposition: the Cornubian Batholith, SW England. Ore Geol Rev 83:215–234

    Article  Google Scholar 

  • Dutrow BL, Henry DJ (2011) Tourmaline: a geologic DVD. Elements 7(5):301–306

    Article  ADS  CAS  Google Scholar 

  • Gao S, Chen X, Cheng S, Zhang Y, Zheng Y, Jiang J, Jiang X (2020) Syn-collisional magmatism at the Longgen Pb–Zn deposit, western Nyainqentanglha belt, Tibet: petrogenesis and implications for regional polymetallic metallogeny. Ore Geol Rev 126:103730

    Article  Google Scholar 

  • Gao S, Chen X, Zhang Y, Zheng Y, Long T, Wu S, Jiang X (2021) Timing and genetic link of porphyry Mo and skarn Pb-Zn mineralization in the Chagele deposit, Western Nyainqentanglha belt. Tibet Ore Geol Rev 129:103929

    Article  Google Scholar 

  • Gao S, Chen X, Zheng Y, Chao N, Zheng S, Lin H, Jiang X, Wu S (2022) Discrepant chemical differentiation and magmatic-hydrothermal evolution of high-silica magmatism associated with Pb-Zn and W mineralization in the Lhasa terrane. Geosci Fron 13(5):101411

  • Ginibre C, Wörner G, Kronz A (2007) Crystal zoning as an archive for magma evolution. Elements 3(4):261–266

    Article  ADS  Google Scholar 

  • Hawthorne FC, Dirlam DM (2011) Tourmaline the indicator mineral: from atomic arrangement to Viking navigation. Elements 7(5):307–312

    Article  ADS  CAS  Google Scholar 

  • Harlaux M, Kouzmanov K, Gialli S, Laurent O, Rielli A, Dini A, Fontboté L (2020) Tourmaline as a tracer of late-magmatic to hydrothermal fluid evolution: the world-class San Rafael tin (-copper) deposit. Peru Econ Geol 115(8):1665–1697

    Article  Google Scholar 

  • Halter WE, Heinrich CA, Pettke T (2005) Magma evolution and the formation of porphyry Cu-Au ore fluids: evidence from silicate and sulfide melt inclusions. Miner Depos 39:845–863

    Article  ADS  CAS  Google Scholar 

  • Heinrich CA (2007) Fluid-fluid interactions in magmatic-hydrothermal ore formation. Rev Mineral Geochem 65(1):363–387

    Article  CAS  Google Scholar 

  • Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96(5–6):895–913

    Article  ADS  CAS  Google Scholar 

  • Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Mineral 70(1–2):1–15

    ADS  CAS  Google Scholar 

  • Holten T, Jamtveit B, Meakin P, Cortini M, Blundy J, Austrheim H (1997) Statistical characteristics and origin of oscillatory zoning in crystals. Am Mineral 82(5–6):596–606

    Article  ADS  CAS  Google Scholar 

  • Hohf M, Trumbull RB, Cuadra P, Solé M (2023) Tourmaline breccias from the Río Blanco-Los Bronces Porphyry Copper District, Chile: constraints on the fluid source and the utility of tourmaline composition for exploration. Econ Geol 118(4):779–800

    Article  Google Scholar 

  • Hou KJ, Li YH, Xiao YK, Liu F, Tian YR (2010) In situ boron isotope measurements of natural geological materials by LA-MCICP-MS. Chinese Sci Bull 55(29):3305–3311

  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sc Lett 220(1–2):139–155

    Article  ADS  CAS  Google Scholar 

  • Hou ZQ, Duan L, Lu Y, Zheng Y, Zhu D, Yang Z, McCuaig TC (2015) Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Econ Geol 110(6):1541–1575

    Article  Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Ac 63(3–4):489–508

    Article  ADS  CAS  Google Scholar 

  • Jiang SY, Palmer MR (1998) Boron isotope systematics of tourmaline from granites and pegmatites; a synthesis. Eur J Mineral 10(6):1253–1265

    Article  CAS  Google Scholar 

  • Jiang SY, Radvanec M, Nakamura E, Palmer M, Kobayashi K, Zhao HX, Zhao KD (2008) Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia Constraints on magmatic and metamorphic fluid evolution. Lithos 106(1–2):1–11

    Article  ADS  CAS  Google Scholar 

  • Keith JD, Whitney JA, Hattori K, Ballantyne GH, Christiansen EH, Barr DL, Cannan TM, Hook CJ (1997) The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic mining districts, Utah. J Petrol 38:1679–1690

    Article  ADS  CAS  Google Scholar 

  • Lang XH, Tang JX, Li ZJ, Huang Y, Ding F, Yang HH, Xie FW, Zhang L, Wang Q, Zhou Y (2014) U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC. J Asian Earth Sci 79:608–622

    Article  ADS  Google Scholar 

  • Large SJE, Quadt A, Wotzlaw JF, Guillong M, Heinrich CA (2018) Magma evolution leading to porphyry Au-Cu mineralization at the Ok Tedi deposit, Papua New Guinea: trace element geochemistry and high-precision geochronology of igneous zircon. Econ Geol 113:39–61

    Article  Google Scholar 

  • Launay G, Sizaret S, Guillou-Frottier L, Gloaguen E, Pinto F (2018) Deciphering fluid flow at the magmatic-hydrothermal transition: a case study from the world-class Panasqueira W-Sn-(Cu) ore deposit (Portugal). Earth Planet Sc Lett 499:1–12

    Article  ADS  CAS  Google Scholar 

  • Lee CTA, Luffi P, Chin EJ, Bouchet R, Dasgupta R, Morton DM, Roux V, Yin Q, Jin D (2012) Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336(6077):64–68

    Article  ADS  CAS  PubMed  Google Scholar 

  • L’Heureux I, Jamtveit B (2002) A model of oscillatory zoning in solid solutions grown from aqueous solutions: applications to the (Ba, Sr)SO4 system. Geochim Cosmochim Ac 66(3):417–429

    Article  ADS  Google Scholar 

  • Li Y, Li XH, Selby D, Li JW (2018) Pulsed magmatic fluid release for the formation of porphyry deposits: tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit. Geology 46(1):7–10

    Article  ADS  Google Scholar 

  • Li W, Qiao X, Zhang F, Zhang L (2022) Tourmaline as a potential mineral for exploring porphyry deposits: a case study of the Bilihe gold deposit in Inner Mongolia, China. Miner Depos 57(1):61–82

    Article  ADS  CAS  Google Scholar 

  • Liu H, Li G, Huang H, Zhang L, Lu M, Lan S, Xie H (2019) The discovery of the Late Triassic porphyry type Cu deposit from Gangdise metallogenic belt, Tibet. Geol China 46(5):1238–1240 ((in Chinese with English abstract))

    CAS  Google Scholar 

  • Liu P, Wu S, Zheng Y, Wang X, Kang Y, Yan J, Chen L (2022) Geology and factors controlling the formation of the newly discovered Beimulang porphyry Cu deposit in the western Gangdese, southern Tibet. Ore Geol Rev 144:104823

    Article  Google Scholar 

  • Loucks RR (2014) Distinctive composition of copper-ore-forming arc magmas. Aust J Earth Sci 61(1):5–16

    Article  CAS  Google Scholar 

  • Marschall HR, Jiang SY (2011) Tourmaline isotopes: no element left behind. Elements 7(5):313–319

    Article  ADS  CAS  Google Scholar 

  • McInnes BI, McBride JS, Evans NJ, Lambert DD, Andrew AS (1999) Osmium isotope constraints on ore metal recycling in subduction zones. Science 286(5439):512–516

    Article  CAS  PubMed  Google Scholar 

  • Meyer C, Wunder B, Meixner A, Romer RL, Heinrich W (2008) Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contrib Miner Petrol 156:259–267

    Article  ADS  CAS  Google Scholar 

  • Novák M, Povondra P, Julie B (2004) Schorl-oxy-schorl to dravite-oxy-dravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. Eur J Mineral 16(2):323–333

    Article  Google Scholar 

  • Oliver NH, Rubenach MJ, Fu B, Baker T, Blenkinsop TG, Cleverley JS, Ridd PJ (2006) Granite-related overpressure and volatile release in the mid crust: fluidized breccias from the Cloncurry district, Australia. Geofluids 6(4):346–358

    Article  CAS  Google Scholar 

  • Palmer MR, London D, Babb HA (1992) Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapor: a temperature-and pressure-dependent isotopic system. Chem Geol: Isot Geosci Section 101(1–2):123–129

    CAS  Google Scholar 

  • Park JW, Campbell IH, Chiaradia M, Hao H, Lee CT (2021) Crustal magmatic controls on the formation of porphyry copper deposits. Nat Rev Earth Env 2(8):542–557

    Article  CAS  Google Scholar 

  • Rapp JF, Klemme S, Butler IB, Harley SL (2010) Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation. Geology 38(4):323–326

    Article  ADS  CAS  Google Scholar 

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ Geol 98(8):1515–1533

    Article  CAS  Google Scholar 

  • Richards JP (2011) High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: just add water. Econ Geol 106(7):1075–1081

    Article  CAS  Google Scholar 

  • Ruiz-Agudo E, Putnis CV, Putnis A (2014) Coupled dissolution and precipitation at mineral-fluid interfaces. Chem Geol 383:132–146

    Article  ADS  CAS  Google Scholar 

  • Shore M, Fowler AD (1996) Oscillatory zoning in minerals; a common phenomenon. Can Mineral 34(6):1111–1126

    CAS  Google Scholar 

  • Sciuba M, Beaudoin G, Makvandi S (2021) Chemical composition of tourmaline in orogenic gold deposits. Miner Depos 56(3):537–560

    Article  ADS  CAS  Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJ, Johnson D, Barton MD (2005) Porphyry deposits: characteristics and origin of hypogene features. Society of Economic Geologists 50–100

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105(1):3–41

    Article  CAS  Google Scholar 

  • Sun WD, Liang HY, Ling MX, Zhan MZ, Ding X, Zhang H, Fan WM (2013a) The link between reduced porphyry copper deposits and oxidized magmas. Geochim Cosmochim Ac 103:263–275

    Article  ADS  CAS  Google Scholar 

  • Sun X, Zheng YY, Wu S, You ZM, Wu X, Li M, Zhou TC, Dong J (2013b) Mineralization age and petrogenesis of associated intrusions in the Mingze-Chengba porphyry-skarn Mo-Cu deposit. Gangdese Acta Petrol Sin 29(4):1392–1406 ((in Chinese with English abstract))

    CAS  Google Scholar 

  • Sun X, Lu YJ, McCuaig TC, Zheng YY, Chang HF, Guo F, Xu LJ (2018) Miocene ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J Petrol 59(3):341–386

    Article  ADS  CAS  Google Scholar 

  • Sun X, Hollings P, Lu YJ (2021a) Geology and origin of the Zhunuo porphyry copper deposit, Gangdese belt, southern Tibet. Miner Deposita 56(3):457–480

    Article  ADS  CAS  Google Scholar 

  • Sun X, Leng CB, Hollings P, Song QJ, Li RY, Wan XQ (2021b) New 40Ar/39Ar and (U-Th)/He dating for the Zhunuo porphyry Cu deposit, Gangdese belt, southern Tibet: implications for pulsed magmatic-hydrothermal processes and ore exhumation and preservation. Miner Deposita 56(5):917–934

    Article  ADS  CAS  Google Scholar 

  • Su ZK, Zhao XF, Zeng LP, Zhao KD, Hofstra AH (2019) Tourmaline boron and strontium isotope systematics reveal magmatic fluid pulses and external fluid influx in a giant iron oxide-apatite (IOA) deposit. Geochim Cosmochim Ac 259:233–252

    Article  ADS  CAS  Google Scholar 

  • Pettke T, Audétat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia): part II: evolving zircon and thorite trace element chemistry. Chem Geol 220(3–4):191–213

    Article  ADS  CAS  Google Scholar 

  • Plümper O, Putnis A (2009) The complex hydrothermal history of granitic rocks: multiple feldspar replacement reactions under subsolidus conditions. J Petrol 50(5):967–987

    Article  ADS  Google Scholar 

  • Qian Q, Hermann J (2013) Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation. Contrib Mineral Petr 165(6):1195–1224

    Article  ADS  CAS  Google Scholar 

  • Tafti MA, Hameedy MA, Baghal NM (2009) Dyslexia, a deficit or a difference: comparing the creativity andmemory skills of dyslexic and nondyslexic students in Iran. Soc Behav Personal Int J 37(8):1009–1016

    Article  Google Scholar 

  • Tang M, Erdman M, Eldridge G, Lee CTA (2018) The redox “filter” beneath magmatic orogens and the formation of continental crust. Sci Adv 4(5):eaar4444

  • Trumbull RB, Chaussidon M (1999) Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite-pegmatite system in Swaziland. Chem Geol 153(1–4):125–137

    Article  ADS  CAS  Google Scholar 

  • Trumbull RB, Slack JF (2018) Boron isotopes in the continental crust: granites, pegmatites, felsic volcanic rocks, and related ore deposits. In: Boron isotopes (pp 249–272). Springer, Cham

  • Trumbull RB, Codeco MS, Jiang SY, Palmer MR, Slack JF (2020) Boron isotope variations in tourmaline from hydrothermal ore deposits: a review of controlling factors and insights for mineralizing systems. Ore Geol Rev 125:103682

    Article  Google Scholar 

  • van Hinsberg VJ, Henry DJ, Dutrow BL (2011) Tourmaline as a petrologic forensic mineral: a unique recorder of its geologic past. Elements 7(5):327–332

    Article  ADS  Google Scholar 

  • Webster JD (2004) The exsolution of magmatic hydrosaline chloride liquids. Chem Geol 210(1–4):33–48

    Article  ADS  CAS  Google Scholar 

  • Wilkinson JJ (2013) Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat Geosci 6(11):917–925

    Article  ADS  CAS  Google Scholar 

  • Wang R, Richards JP, Hou ZQ, Yang ZM, Gou ZB, DuFrane SA (2014) Increasing magmatic oxidation state from Paleocene to Miocene in the eastern Gangdese Belt, Tibet: implication for collision-related porphyry Cu-Mo±Au mineralization. Econ Geol 109(7):1943–1965

    Article  CAS  Google Scholar 

  • Wang R, Weinberg RF, Collins WJ, Richards JP, Zhu DC (2018) Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth Sci Rev 181:122–143

    Article  ADS  CAS  Google Scholar 

  • Wu S, Zheng YY, Sun X (2016) Subduction metasomatism and collision-related metamorphic dehydration controls on the fertility of porphyry copper ore-forming high Sr/Y magma in Tibet. Ore Geol Rev 73:83–103

    Article  Google Scholar 

  • Wu S, Zheng Y, Xu B, Jiang G, Yi J, Liu X, Li L (2022) Heterogeneous mantle associated with asthenosphere and Indian slab metasomatism: constraints on fertilization of porphyry Cu mineralization in Tibetan orogen. Ore Geol Rev 140:104601

    Article  Google Scholar 

  • Yang Z, Hou Z, White NC, Chang Z, Li Z, Song Y (2009) Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong. Tibet Ore Geol Rev 36(1–3):133–159

    Article  Google Scholar 

  • Yang ZM, Goldfarb R, Chang ZS (2016) Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. Soc Econ Geologists Special Publication 19:279–300

    Google Scholar 

  • Yang ZM, Cooke D (2019) Porphyry copper deposits in China. Soc Econ Geologists, Special Publication 22:133–187

    Google Scholar 

  • Zhao XY, Yang ZS, Zheng YC, Liu YC, Tian SH, Fu Q (2014) Geology and genesis of the post-collisional porphyry–skarn deposit at Bangpu. Tibet Ore Geol Rev 70:486–509

    Article  Google Scholar 

  • Zhao HD, Zhao KD, Palmer MR, Jiang SY, Chen W (2021) Magmatic-hydrothermal mineralization processes at the Yidong Tin Deposit, South China: insights from in situ chemical and boron isotope changes of tourmaline. Econ Geol 116(7):1625–1647

    Article  Google Scholar 

  • Zheng YC, Shen Y, Wang L, Griffin WL, Hou ZQ (2021a) Collision-related porphyry Cu deposits formed by input of ultrapotassic melts into the sulfide-rich lower crust. Terra Nova 33(6):582–589

    Article  ADS  CAS  Google Scholar 

  • Zheng YY, Wu S, Ci Q, Chen X, Gao SB, Liu XF, Jiang XW, Zheng SL, Li M, Jiang XJ (2021b) Cu-Mo-Au metallogenesis and minerogenetic series during superimposed orogenesis process in Gangdese. Earth Sci 46:1909–1940

    Google Scholar 

  • Zheng YY, Xue YX, Cheng LJ, Fan ZH, Gao SB (2004) Finding, characteristics, and significances of Qulong super-large porphyry copper (molybdenum) deposit. Tibet Earth Sci 29:103–108 ((in Chinese with English abstract))

    CAS  Google Scholar 

  • Zheng Y, Zhang G, Xu R, Gao S, Pang Y, Cao L, Shi Y (2007) Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese, Tibet Chinese. Sci Bull 52(22):3139–3147

    Article  CAS  Google Scholar 

  • Zheng YY, Sun X, Gao JF, Wu S, Xu J, Jiang JS, Chen X, Zhao ZY, Liu Y (2015) Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt. J Asian Earth Sci 103:23–39

    Article  ADS  Google Scholar 

  • Zhu DC, Zhao ZD, Niu Y, Mo XX, Chung SL, Hou ZQ, Wang L, Wu FY (2011) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sc Lett 301(1–2):241–255

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. K. Kelley and Prof. D. Kreiner for their insightful comments that greatly improved the quality of the manuscript. Editor-in-Chief Prof. G. Beaudoin and Associate editor Prof. M. Bouhabdellah are gratefully acknowledged for their insightful comments and editorial handling. This research was supported by the China National Science Foundation (No.42372092; No.U22A20572). We are grateful to the employees of the Wuhan SampleSolution Analytical Technology Co., Ltd. for their help and guidance during the EMPA and LA-ICP-MS analyses. Dr. Di Zhang and Hedong Zhao from the State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Resources, China University of Geosciences, are gratefully acknowledged for providing insightful comments about boron isotope analyses and structural formulae of Fe3+/(Fe2+ + Fe3+) ratios in tourmaline and simulation calculation of boron isotopic variation during different generations of tourmaline.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youye Zheng or Xin Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: M. BOUABDELLAH

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 133 KB)

Supplementary file2 (PDF 2995 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Chen, X., Palmer, M.R. et al. Magma mixing and magmatic-to-hydrothermal fluid evolution revealed by chemical and boron isotopic signatures in tourmaline from the Zhunuo–Beimulang porphyry Cu-Mo deposits. Miner Deposita (2024). https://doi.org/10.1007/s00126-024-01255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00126-024-01255-6

Keywords

Navigation