Skip to main content

Advertisement

Log in

Geochemistry of the Kalatongke Ni–Cu–(PGE) sulfide deposit, NW China: implications for the formation of magmatic sulfide mineralization in a postcollisional environment

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Kalatongke (also spelt as Karatungk) Ni–Cu–(platinum-group element, PGE) sulfide deposit, containing 33 Mt sulfide ore with a grade of 0.8 wt.% Ni and 1.3 wt.% Cu, is located in the Eastern Junggar terrane, Northern Xinjiang, NW China. The largest sulfide ore body, which occupies more than 50 vol.% of the intrusion Y1, is dominantly comprised of disseminated sulfide with a massive sulfide inner zone. Economic disseminated sulfides also occur at the base of the intrusions Y2 and Y3. The main host rock types are norite in the lower part and diorite in the upper part of each intrusion. Enrichment in large ion lithophile elements and depletion in heavy rare earth elements relative to mid-ocean ridge basalt indicate that the mafic intrusions were produced from magmas derived from a metasomatized garnet lherzolite mantle. The average grades of the disseminated ores are 0.6 wt.% Ni and 1.1 wt.% Cu, whereas those of the massive ores are 2 wt.% Ni and 8 wt.% Cu. The PGE contents of the disseminated ores (14–69 ppb Pt and 78–162 ppb Pd) are lower than those of the massive ores (120–505 ppb Pt and 30–827 ppb Pd). However, on the basis of 100% sulfide, PGE contents of the massive sulfides are lower than those of the disseminated sulfides. Very high Cu/Pd ratios (>4.5 × 104) indicate that the Kalatongke sulfides segregated from PGE-depleted magma produced by prior sulfide saturation and separation. A negative correlation between the Cu/Pd ratio and the Pd content in 100% sulfide indicates that the PGE content of the sulfide is controlled by both the PGE concentrations in the parental silicate magma and the ratio of the amount of silicate to sulfide magma. The negative correlations between Ir and Pd indicate that the massive sulfides experienced fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asif M, Parry SJ (1991) Study of the digestion of chromite during nickel sulphide fire assay for the platinum group elements and gold. Analyst 116:1071–1073

    Article  Google Scholar 

  • Barker LL, Rutherford MJ (1996) The effect of dissolved water on the oxidation state of silicate melts. Geochim Cosmochim Acta 60:2179–2187

    Article  Google Scholar 

  • Barnes S-J, Lightfoot PC (2005) Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents. Economic Geology 100th Anniversary Volume, pp 179–213

  • Barnes S-J, Maier WD (1999) The fractionation of Ni, Cu and the noble metals in silicate and sulfide liquids. In: Keays RR, Lesher CM, Lightfoot PC, Farrow CEG (ed) Dynamic processes in magmatic ore deposits and their application in mineral exploration, Short Course, vol 13. Geological Association of Canada, Canada, pp 69–106

    Google Scholar 

  • Barnes S-J, Naldrett AJ (1987) Fractionation of the platinum group elements and gold in some komatiites of the Abitibi Greenstone Belt, Northwest Ontario. Econ Geol 82:465–483

    Google Scholar 

  • Barnes S-J, Naldrett AJ, Gorton MP (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol 53:303–323

    Article  Google Scholar 

  • Barnes S-J, Makovicky E, Karup-Moller S, Makovicky M, Rose-Hansen J (1997) Partition coefficients for Ni, Cu, Pd, Pt, Rh and Ir between monosulfide solid solution and sulfide liquid and the implication for the formation of compositionally zoned Ni–Cu sulfide bodies by fractional crystallization of sulfide liquid. Can J Earth Sci 34:366–374

    Google Scholar 

  • Bevins RE, Kokelaar BP, Dunkley PN (1984) Petrology and geochemistry of lower to middle Ordovician igneous rocks in Wales: a volcanic arc to marginal basin transition. Proc Geol Ass 95:337–347

    Article  Google Scholar 

  • BGMX (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region) (1993) Regional Geology of Xinjiang Autonomous Region, Geological Memoirs, No.32, Map Scale 1:500000. Geological Publishing House, Beijing, p 841. (in Chinese with English abstract)

    Google Scholar 

  • Boyd R, Mathiesen CO (1979) The nickel mineralization of the Rana mafic intrusion, Nordland, Norway. Can Mineral 17:287–298

    Google Scholar 

  • Brugmann GE, Naldrett AJ, Asif M, Lightfoot PC, Gorbachev NS, Fedorenko VA (1993) Siderophile and chalcophile metals as tracers of the evolution of the Siberian trap in the Noril’sk region Russia. Geochim Cosmochim Acta 57:2001–2018

    Article  Google Scholar 

  • Campbell IH, Naldrett AJ (1979) The influence of silicate: sulfide ratios on the geochemistry of magmatic sulfides. Econ Geol 74:1503–1506

    Google Scholar 

  • Carroll MR, Runtherford MJ (1987) The stability of igneous anhydrite: experimental results and implications for sulfur behavior in the 1982 El Chichon trachyandesite and other evolved magmas. J Petrol 28:781–801

    Google Scholar 

  • Cervantes P, Wallace PJ (2003) Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31:235–238

    Article  Google Scholar 

  • Chen B, Jahn B-M (2004) Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence. J Asian Earth Sci 23:691–703

    Article  Google Scholar 

  • Crocket JH (2002) Platinum-group element geochemistry of mafic and ultramafic rocks. Canadian Institute Mining Metallurgy and Petroleum, special volume 54:177–210

    Google Scholar 

  • Crocket JH, Kabir A (1988) PGE in Hawaiian Basalts: implications of hydrothermal alteration on PGE mobility in volcanic fluids. In: Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geo-platinum 87. Elsevier, London, p 259

    Google Scholar 

  • De Hoog JCM, Mason PRD, Van Bergen MJM (2001) Sulfur and chalcophile elements in subduction zones: constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia. Geochim Cosmochim Acta 65:3147–3164

    Article  Google Scholar 

  • Duggen S, Hoernle K, Bogaard PVD, Harris C (2004) Magmatic evolution of the Alboran region: the role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis. Earth Planet Sci Lett 218:91–108

    Article  Google Scholar 

  • Ebel DS, Naldrett AJ (1996) Fractional crystallization of sulfide ore liquids at high temperature. Econ Geol 91:607–637

    Google Scholar 

  • Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102:14991–15019

    Article  Google Scholar 

  • Ewart E (1982) The mineralogy and petrology of Tertiary—recent orogenic volcanic rocks with special reference to the andesite-basaltic composition range. In: Thorpe RS (ed) Andesites. Wiley, New York, pp 25–87

    Google Scholar 

  • Fleet ME, Chryssoulis SL, Stone WE, Weisener CG (1993) Partition of platinum-group elements and Au in the Fe–Ni–Cu–S system: experiments on the fractional crystallization of sulfide melt. Contrib Mineral Petrol 115:36–44

    Article  Google Scholar 

  • Francis RD (1990) Sulfide globules in mid-ocean ridge basalts (MORB) and the effect of oxygen abundance in Fe–S–O on the ability of those liquids to partition metals from MORB and komatiitic magmas. Chem Geol 85:199–213

    Article  Google Scholar 

  • Fryer BJ, Greenough JD (1995) Evidence for mantle heterogeneity from platinum-group element abundances in Indian Ocean basalts. Can J Earth Sci 29:2329–2339

    Article  Google Scholar 

  • Greenough JD, Owen JV (1992) Platinum-group elements geochemistry of continental tholeiites, analysis of the Long Range dyke swarm, Newfoundland, Canada. Chem Geol 98:203–219

    Article  Google Scholar 

  • Gill J (1981) Orogenic andesites and plate tectonics. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Han B-F, Wang S-G, Jahn B-M, Hong D-W, Kagami H, Sun Y-L (1997) Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd–Sr isotopic evidence, and implication for Phanerozoic crustal growth. Chem Geol 138:135–159

    Article  Google Scholar 

  • Han B-F, Ji J-Q, Song B, Chen LH, Li Z-H (2004) SHRIMP zircon U–Pb ages and implications of the Kalatongke and Huangshandong sulfide-bearing mafic–ultramafic intrusions. Chin Sci Bull 49:2324–2328. (in Chinese with English abstract)

    Google Scholar 

  • Han C-M, Xiao W-J, Zhao G-C, Qu W-J, Du A-D (2007) Re–Os dating of the Kalatongke Cu–Ni deposit, Altay Shan, NW China, and resulting geodynamic implications. Ore Geol Rev 32:452–468

    Article  Google Scholar 

  • Haraguchi S, Ishii T, Kimura J-I (2008) Early tholeiitic and calc-alkaline arc magmatism of Middle to Late Eocene Age in the southern Ogasawara (Bonin) forearc. Contrib Mineral Petrol 155:593–618

    Article  Google Scholar 

  • Hawkesworth CJ (1982) Isotopic characteristics of magmas erupted along destructive plate margins. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. Chichester, Wiley, pp 549–571

    Google Scholar 

  • Heinhorst J, Lehmann B, Ermolov P, Serykh V, Zhurutin S (2000) Paleozoic crustal growth and metallogeny of Central Asia: evidence from magmatic–hydrothermal ore systems of Central Kazakhstan. Tectonophysics 328:69–87

    Article  Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC (1986) Multiple sources for basalts arc rocks from the southern volcanic zone of the Andes (34–41S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle and continental crust. J Geophys Res 91:5963–5983

    Article  Google Scholar 

  • Hoatson DM, Blake DH (2000) Geology and economic potential of the Palaeoproterozoic layered mafic–ultramafic intrusions in the East Kimberley, Western Australia. Bull Aust Geol Surv Organ 246:469

    Google Scholar 

  • Hong D, Zhang J, Wang T, Wang S, Xie X (2004) Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt. J Asian Earth Sci 23:799–813

    Article  Google Scholar 

  • Ishizuka O, Taylor RN, Milton A, Nesbitt RW (2003) Fluid–mantle interaction in an intra-oceanic arc: constraints from high precision Pb isotopes. Earth Planet Sci Lett 211:221–236

    Article  Google Scholar 

  • Jahn B-M, Wu F-Y, Chen B (2000a) Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23:82–92

    Google Scholar 

  • Jahn B-M, Wu F-Y, Chen B (2000b) Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic. Trans R Soc Edinburgh Earth Sci 91:181–193

    Google Scholar 

  • Jahn B-M, Wu F-Y, Capdevila R, Martineau F, Zhao Z-H, Wang Y-X (2001) Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an Mountain in NE China. Lithos 59:171–198

    Article  Google Scholar 

  • Keays RR (1995) The role of komatiitic magmatism and S-saturation in the formation of ore deposits. Lithos 34:1–18

    Article  Google Scholar 

  • Kogiso K, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett 148:193–205

    Article  Google Scholar 

  • Kozlovsky AM, Yarmolyuk VV, Savatenkov VM, Kovach VP (2006) Sources of basaltoid magmas in rift settings of an active continental margin: example from the bimodal association of the Noen and Tost ranges of the Late Paleozoic Gobi–Tien Shan rift zone, Southern Mongolia. Petrology 14:337–360

    Article  Google Scholar 

  • Kullerud G, Yund RA, Moh GH (1969) Phase relations in the Cu–Fe–S, Cu–Ni–S and Fe–Ni–S systems. Econ Geol 4:323–343

    Google Scholar 

  • Kürkcüoğlu B, Furman T, Hanan B (2008) Geochemistry of post-collisional mafic lavas from the North Anatolian Fault zone, Northwestern Turkey. Lithos 101:416–434

    Article  Google Scholar 

  • Lesher CM, Campbell IH (1993) Geochemical and fluid dynamic modeling of compositional variations in Archean komatiite-hosted nickel sulfide ores in Western Australia. Econ Geol 88:804–816

    Article  Google Scholar 

  • Li DH, Bao XC, Zhang BN, Han ZW, Lan G, Zheng Z (1989) Investigation of geology, geophysics and geochemistry of the Huangshan Cu–Ni metallogenic Belt for mineral exploration, unpublished report by National 305 project office in Xinjiang, pp 418 (in Chinese)

  • Li C, Lightfoot PC, Amelin Y, Naldrett AJ (2000) Contrasting petrological and geochemical relationships in the Voisey’s Bay and Mushuau intrusions, Labrador, Canada: implications for ore genesis. Econ Geol 95:771–799

    Article  Google Scholar 

  • Li C, Xu ZH, de Waal SA, Ripley EM, Maier WD (2004) Compositional variations of olivine from the Jinchuan Ni–Cu sulfide deposit, western China: implications for ore genesis. Miner Depos 39:159–172

    Article  Google Scholar 

  • Liegeois LP (1998) Preface—some words on the post-collisional magmatism. Lithos 45:xv–xvii

    Article  Google Scholar 

  • Lightfoot PC, Hawkesworth CJ (1997) Flood basalts and magmatic Ni, Cu and PGE sulfide mineralisation: comparative geochemistry of the Noril’sk (Siberian Flood Basalts) and West Greenland sequences. American Geophysical Union, Washington, DC, pp 357–380

    Google Scholar 

  • Lightfoot PC, Keays RR (2005) Siderophile and chalcophile metal variations in flood basalts from the Siberian trap, Noril’sk region: Implications for the origin of the Ni–Cu–PGE sulfide ores. Econ Geol 100:439–462

    Article  Google Scholar 

  • Liu D-Q, Tang Y-L, Zhou R-H (2005) Copper deposits and nickel deposits in Xinjiang, China. Geological Publishing House, Beijing, p 360. (in Chinese)

    Google Scholar 

  • Luhr JF (1990) Experimental phase relations of water- and sulfur-saturated arc magmas and the 1982 eruption of El Chichon Volcano. J Petrol 31:1071–1114

    Google Scholar 

  • Mao JW, Yang JM, Qu WJ, Du AD, Wang ZL, Han CM (2002) Re–Os age of Cu–Ni ores from the Huangshandong Cu–Ni sulfide deposit in the East Tianshan Mountains and its implication for geodynamic processes. Miner Depos 21:323–330. (in Chinese)

    Google Scholar 

  • Mao JW, Pirajnob F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng LS, Yang JM, Zhang CQ (2008) A review of the Cu–Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): principal characteristics and ore-forming processes. J Asian Earth Sci 32:184–203

    Article  Google Scholar 

  • Maier WD, Barnes S-J, Chinyepi G, Barton Jr JM, Eglington B, Setshedi I (2008) The composition of magmatic Ni–Cu–(PGE) sulfide deposits in the Tati and Selebi-Phikwe belts of eastern Botswana. Miner Depos 43:37–60

    Article  Google Scholar 

  • Métrich N, Schiano P, Clocchiatti R, Maury RC (1999) Transfer of sulfur in subduction settings: an example from Batan Island (Luzon volcanic arc, Philippines). Earth Planet Sci Lett 167:1–14

    Article  Google Scholar 

  • Middlemost EAK (1975) The basalt clan. Earth Sci Rev 11:337–364

    Article  Google Scholar 

  • Misra KC, Fleet ME (1973) The chemical composition of synthetic and natural pentlandite assemblages. Econ Geol 68:518–539

    Google Scholar 

  • Misra KC, Flet ME (1974) Chemical composition and stability of violarite. Econ Geol 69:391–403

    Google Scholar 

  • Mungall JE (2002) Roasting the mantle: slab melting and genesis of major Au and Au-rich Cu deposits. Geology 30:915–918

    Article  Google Scholar 

  • Naldrett AJ (1989) Magmatic sulfide deposits. Oxford University Press, New York, p 186

    Google Scholar 

  • Naldrett AJ (2005) Magmatic sulfide deposits: geology, geochemistry and exploration. Springer, New York, p 727

    Google Scholar 

  • Naldrett AJ, Craig JR, Kullerud G (1967) The central potion of the Fe–Ni–S system and its bearing on pentlandite solution in iron–nickel sulfide ores. Econ Geol 62:826–847

    Google Scholar 

  • Naldrett AJ, Lightfoot PC, Federenko VA, Doherty W, Gorbachev NS (1992) Geology and geochemistry of intrusion and flood basalts of the Noril’sk region, USSR, with implication for the origin of the Ni–Cu ores. Econ Geol 87:975–1004

    Google Scholar 

  • Naldrett AJ, Fedorenko VA, Asif M, Shushen L, Kunilov VE, Stekhin AI, Lightfoot PC, Gorbachev NS (1996) Controls on the composition of Ni–Cu sulfide deposits as illustrated by those at Noril’sk, Siberia. Econ Geol 91:751–773

    Google Scholar 

  • No. 4 Geological Party, Xinjiang Bureau of Geology, Mineral Resources, Mineral Exploration and Development (2003) Geological detailed investigation report on the no. 2 copper–nickel ore deposit in Kalatongke District, Fuyun County, Xinjiang (unpublished, in Chinese)

  • Oberthür T, Weiser TW, Gast L (2003) Geochemistry and mineralogy of platinum-group elements at Hartley Platinum Mine, Zimbabwe Part 2: supergene redistribution in the oxidized Main Sulfide Zone of the Great Dyke, and alluvial platinum-group minerals. Miner Depos 38:344–355

    Google Scholar 

  • Paktunc AD (1990) Comparative geochemistry of platinum-group elements of nickel–copper sulfide occurrences associated with mafic–ultramafic intrusions in the Appalachian orogen. J Geochem Explor 37:101–111

    Article  Google Scholar 

  • Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423

    Article  Google Scholar 

  • Pearce JA (1982) Trace elements characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. Wiley, New York, pp 525–548

    Google Scholar 

  • Pearce JA (1983) The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Peltonen P (1995) Magma–country rock interaction and the genesis of Ni–Cu deposits in the Vammala nickel belt, SW Finland. Mineral Petrol 52:1–24

    Article  Google Scholar 

  • Pina R, Lunar R, Ortega L, Gevilla F, Alapieti T, Martinez C (2006) Petrology and geochemistry of mafic–ultramafic fragments from the Aguablanca Ni–Cu ore barria, southwest Spain. Econ Geol 101:865–881

    Article  Google Scholar 

  • Pirajno F, Mao JW, Zhang ZC, Zhang ZH, Chai FM (2008) The association of mafic–ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits. J Asian Earth Sci 32:165–183

    Google Scholar 

  • Qi L, Hu J, Conrad G (2000) Determination of trace elements in granites by inductively coupled plasma ass spectrometry. Talanta 51:507–513

    Article  Google Scholar 

  • Qin KZ, Zhang LC, Xiao WJ, Xu XW, Yan Z, Mao JW (2003) Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, Northwestern China. In: Mao JW, Goldfarb R, Seltmann R, Wang DH, Xiao WJ, Hart C (ed) Tectonic evolution and Metallogeny of the Chinese Altay and Tianshan, vol. 10. IAGOD Guidebook Series. CERCAMS/NHM, London, pp 227–248

    Google Scholar 

  • Richard JP, McCulloch MT, Chappell BW, Kerrich R (1991) Sources of metals in the Porgera gold deposit, Papua New Guiner: evidence from alteration, isotope, and noble metal geochemistry. Geochim Cosmochim Acta 55:565–580

    Article  Google Scholar 

  • Ripley EM, Sarkar A, Li CS (2005) Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni–Cu deposit, China. Econ Geol 100:1349–1361

    Article  Google Scholar 

  • Ripley EM, Taib NI, Li C, Moore CH (2007) Chemical and mineralogical heterogeneity in the basal zone of the Partridge River Intrusion: implications for the origin of Cu–Ni sulfide mineralization in the Duluth Complex, midcontinent rift system. Contrib Mineral Pertol 154:35–54

    Article  Google Scholar 

  • Roeder PL, Emsile RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Rudnick R, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophy 33:267–309

    Article  Google Scholar 

  • Sengör AMC, Natalin BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:299–307

    Article  Google Scholar 

  • Sillitoe RH (1997) Characteristics and controls of the largest porphyry copper gold and epithermal gold deposits in the circum-Pacific region. Austral J Earth Sci 44:373–388

    Article  Google Scholar 

  • Song X-Y, Zhou M-F, Cao Z-M, Sun M, Wang Y-L (2003) The Ni–Cu–(PGE) magmatic sulfide deposits in the Yangliuping area within the Permian Emeishan large igneous province, SW China. Miner Depos 38:831–843

    Article  Google Scholar 

  • Song X-Y, Zhou M-F, Wang Y, Qi L (2006) Role of crustal contamination in formation of the Jinchuan intrusion and its world-class Ni–Cu–(PGE) sulfide deposit, NW China. Int Geol Rev 48:1113–1133

    Article  Google Scholar 

  • Song XY, Zhou MF, Tao Y, Xiao JF (2008) Controls on the metal compositions of magmatic sulfide deposits in the Emeishan large igneous province, SW China. Chem Geol 253:38–49

    Article  Google Scholar 

  • Stolz AJ, Jochum KP, Spettle B, Hofmann AW (1996) Fluid- and melt-related enrichment in the subarc mantle: evidence from Nb/Ta variations in island-arc basalts. Geology 24:587–590

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Sounders AD, Norry MJ (eds) Magmatism in the Ocean Basins Geological Society Special Publication 42:313–345

  • Tasumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high pressure experiments and natural rocks. J Volcano Geotherm Res 29:293–390

    Article  Google Scholar 

  • Tornos F, Casquet C, Galindo C, Velasco F, Canales A (2001) A new style of Ni–Cu mineralization related to magmatic breccia pipes in a transpressional magmatic arc, Aguablanca, Spain. Miner Depos 36:700–706

    Article  Google Scholar 

  • Wang RM, Zhao CL (1991) Karatungk Cu–Ni sulfide no.1 ore deposit in Xinjiang. Geological Publishing House, Beijing, p 317. (in Chinese)

    Google Scholar 

  • Wang DH, Chen YC, Xu ZG (2002) Metallogenic series and discipline of the Altai Metallogenic Province. Atomic Energy, Beijing

    Google Scholar 

  • Wang KL, Chung SL, O’Reilly SY, Sun SS, Shinjo R, Chen CH (2004) Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the Northern Taiwan region. J Petrol 45:975–1101

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis: a global tectonic approach. Unwin Hyman, London, p 466

    Book  Google Scholar 

  • Windley BF, Alexeiev D, Xiao W-J, Kroner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc 164:31–47

    Article  Google Scholar 

  • Wu F-Y, Wildea SA, Zhang G-L, Sun D-Y (2004) Geochronology and petrogenesis of the post-orogenic Cu–Ni sulfide-bearing mafic–ultramafic complexes in Jilin Province, NE China. J Asian Earth Sci 23:781–797

    Article  Google Scholar 

  • Wyborn D, Sun S-S (1994) Sulphur-undersaturated magmatism—a key factor for generating magma-related copper–gold deposits. AGSO Res Newsl 21:7–8. (November)

    Google Scholar 

  • Wyllie PJ (1981) Plate tectonics and magma genesis. Geol Rundsch 70:128–153

    Article  Google Scholar 

  • Wyllie PJ (1982) Subduction products according to experimental prediction. Bull Geol Soc Am 93:468–476

    Article  Google Scholar 

  • Wyllie PJ, Sekine T (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol 79:375–280

    Article  Google Scholar 

  • Xiao W-J, Wndley BF, Badarch G, Sun S, Li J, Qin K, Wang Z (2004) Paleozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia. J Geol Soc 161:339–342

    Google Scholar 

  • Xiao W-J, Han C-M, Yuan C, Sun M, Lin S-F, Chen H-L, Li Z-L, Li J-L, Sun S (2008) Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia. J Asian Earth Sci 32:102–117

    Article  Google Scholar 

  • Zhang HF, Sun M, Lu FX, Zhou XH, Zhou M-F, Liu YS, Zhang GH (2001) Moderately depleted lithospheric mantle underneath the Yangtze Block: evidence from a garnet lherzolite xenolith in the Dahongshan kimberlite. Geochem J 35:315–331

    Google Scholar 

  • Zhang ZC, Yan SH, Chen BL, He LX, He YS, Zhou G (2003) Geochemistry of the Kalatongke basic complex in Xinjiang and its constraints on genesis of the deposit. Acta Petrol Mineral 22:217–224. (in Chinese with English abstract)

    Google Scholar 

  • Zhang ZC, Yan SH, Chen BL, He LX, He YS (2006) Sr, Nd and O isotope geochemistry of the mafic–ultramafic complexes in the south margin of Altay orogenic belt and discussion on their sources. Geol Rev 52:38–42. (in Chinese with English abstract)

    Google Scholar 

  • Zhang CL, Li XH, Li ZX, Ye HM, Li CN (2008) A Permian layered intrusive complex in the western Tarim block, northwestern China: product of a ca. 275-Ma mantle plume? J Geol 116:269–287

    Article  Google Scholar 

  • Zhou M-F, Yang Z-X, Song X-Y, Keays RR, Lesher CM (2002) Magmatic Ni–Cu–(PGE) sulfide deposits in China. In: Cabri LJ (ed) The geology, geochemistry, mineralogy, mineral beneficiation of the Platinum-Group Elements. Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 54, pp 619–636

  • Zhou MF, Lesher CM, Yang ZX, Li JW, Sun M (2004) Geochemistry and petrogenesis of 270 Ma Ni–Cu–(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt. Chem Geol 209:233–257

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from NSFC (40573014, 40730420) and “CAS Hundred Talents” Project from Chinese Academy of Sciences to Xie-Yan Song. We thank Mr. Jun Liu, Bin Wang, and Cai-Neng Tu of the Kalatongke mine for their kind help during field work. In addition, we thank Ms. Jing Hu for her assistance with LA-ICP-MS analysis. The manuscript was improved by the thoughtful comments and suggestions from Richard Ernst and Franco Pirajno. Additional suggestions for improvement were made by Peter Lightfoot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie-Yan Song.

Additional information

Editorial handling: Peter Lightfood

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, XY., Li, XR. Geochemistry of the Kalatongke Ni–Cu–(PGE) sulfide deposit, NW China: implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Miner Deposita 44, 303–327 (2009). https://doi.org/10.1007/s00126-008-0219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-008-0219-x

Keywords

Navigation