Skip to main content
Log in

Sigma factor binding protein 1 (CsSIB1) is a putative candidate of the major-effect QTL dm5.3 for downy mildew resistance in cucumber (Cucumis sativus)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The dm5.3 major-effect QTL in cucumber encodes a homolog of Arabidopsis sigma factor binding protein 1 (CsSIB1). CsSIB1 positively regulates defense responses against downy mildew in cucumber through the salicylic acid (SA) biosynthesis/signaling pathway.

Abstract

Downy mildew (DM) caused by the oomycete pathogen Pseudoperonospora cubensis is an important disease of cucumber and other cucurbits. Our knowledge on molecular mechanisms of DM resistance is still limited. In this study, we reported identification and functional characterization of the candidate gene for the major-effect QTL, dm5.3 for DM resistance originated from PI 197088. The dm5.3 QTL was Modelized through marker-assisted development of near isogenic lines (NILs). NIL-derived segregating populations were used for fine mapping which narrowed the dm5.3 locus down to a 144 kb region. Based on multiple lines of evidence, we show that CsSIB1 (CsGy5G027140) that encodes the VQ motif-containing sigma factor binding protein 1 as the most likely candidate for dm5.3. Local association analysis identified a haplotype consisting of 7 SNPs inside the coding and promoter region of CsSIB1 that was associated with DM resistance. Expression of CsSIB1 was up-regulated with P. cubensis infection. Transcriptome profiling of NILs in response to P. cubensis inoculation revealed key players and associated gene networks in which increased expression of CsSIB1 antagonistically promoted salicylic acid (SA) but suppressed jasmonic acid (JA) biosynthesis/signaling pathways. Our work provides novel insights into the function of CsSIB1/dm5.3 as a disease resistance (R) gene. The roles of sigma factor binding protein genes in pathogen defense in cucumber were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data and materials availability

All data pertinent to the reported work have been provided in the manuscript or in the supplemental online materials. The complete raw reads data for RNA-Seq reported in this study have been deposited to NCBI under BioProject accession PRJNA853345. The DNA sequences for the cucumber CsSIB1 genes have been deposited under NCBI GenBank accession numbers ON911570 and ON911570.

References

  • Aerts N, Chhillar H, Ding PT, van Wees SCM (2022) Transcriptional regulation of plant innate immunity. Essays in Biochem 2022, EBC20210100

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    CAS  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq-A python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    CAS  Google Scholar 

  • Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MVP (2018) Disease resistance mechanisms in plants. Genes 9:339

    Google Scholar 

  • Andreasson E, Jenkins T, Brodersen P et al (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589

    CAS  Google Scholar 

  • Berg JA, Hermans FWK, Beenders F et al (2020) Analysis of QTL DM4.1 for downy mildew resistance in cucumber reveals multiple subQTL: a novel RLK as candidate gene for the most important subQTL. Front Plant Sci 11:1–18

    Google Scholar 

  • Berg JA, Hermans FWK, Beenders F et al (2021) The amino acid permease (AAP) genes CsAAP2A and SlAAP5A/B are required for oomycete susceptibility in cucumber and tomato. Mol Plant Path 22:658–672

    CAS  Google Scholar 

  • Blighe K, Rana S, Lewis M (2021) EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. https://github.com/kevinblighe/EnhancedVolcano. https://github.com/kevinblighe/EnhancedVolcano

  • Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    CAS  Google Scholar 

  • Bürger M, Chory J (2019) Stressed out about hormones: how plants orchestrate immunity. Cell Host Microbe 26:163–172

    Google Scholar 

  • Burkhardt A, Day B (2016) Transcriptome and small RNAome dynamics during a resistant and susceptible interaction between cucumber and downy mildew. Plant Genome 9:1–19

    CAS  Google Scholar 

  • Call AD, Criswell AD, Wehner TC et al (2012) Screening cucumber for resistance to downy mildew caused by Pseudoperonospora cubensis Rostov. Crop Sci 52:577–592

    CAS  Google Scholar 

  • Chen JQ, Wang HP, Li Y, Pan J, Hu Y, Yu D (2018) Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinereal. J Integr Plant Biol 60:956–969

    CAS  Google Scholar 

  • Cheng Y, Zhou Y, Yang Y, Chi Y-J, Zhou J, Chen JY et al (2012) Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiol 159:810–825

    CAS  Google Scholar 

  • Cheng Q, Li N, Dong L, Zhang D, Fan S, Jiang L, Wang X, Xu P, Zhang S (2015) Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Front Plant Sci 6:1024

    Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico J et al (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–671

    CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    CAS  Google Scholar 

  • Cohen Y, van den Langenberg KM, Wehner TC et al (2015) Resurgence of Pseudoperonospora cubensis: the causal agent of cucurbit downy mildew. Phytopathology 105:998–1012

    Google Scholar 

  • Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signaling in plants. Nat Rev Immunol 16:537–552

    CAS  Google Scholar 

  • Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511

    CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    CAS  Google Scholar 

  • Du M, Zhao J, Tzeng DTW, Liu Y, Deng L et al (2017) MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29:1883–1906

    CAS  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255

    Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G et al (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    CAS  Google Scholar 

  • Gao QM, Venugopal S, Navarre D, Kachroo A (2011) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 155:464–476

    CAS  Google Scholar 

  • Garcia-Molina A, Altmann M, Alkofer A et al (2017) LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2. J Exp Bot 68:1185–1197

    CAS  Google Scholar 

  • Gautam JK, Giri MK, Singh D, Chattopadhyay S, Ashis Kumar Nandi AK (2021) MYC2 influences salicylic acid biosynthesis and defense against bacterial pathogens in Arabidopsis thaliana. Physiol Plant 173:2248–2261

    CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  Google Scholar 

  • Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849

    CAS  Google Scholar 

  • Hermann M, Maier F, Masroor A, Hirth S, Pfitzner AJP, Pfitzner UM (2013) The Arabidopsis NIMIN proteins affect NPR1 differentially. Front Plant Sci 4:88

    Google Scholar 

  • Holmes GJ, Ojiambo PS, Hausbeck MK et al (2015) Resurgence of cucurbit downy mildew in the United States: a watershed event for research and extension. Plant Dis 99:428–441

    Google Scholar 

  • Huang W, Wu Z, Tian H, Li X, Zhang Y (2021) Arabidopsis CALMODULIN-BINDING PROTEIN 60b plays dual roles in plant immunity. Plant Commun 2:100213

    CAS  Google Scholar 

  • Jiang YJ, Yu DQ (2016) The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance. Plant Physiol 171:2771–2782

    CAS  Google Scholar 

  • Jiang SY, Sevugan M, Ramachandran S (2018) Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specific with comprehensive expression regulation by various biotic and abiotic stresses. BMC Genomics 19:342

    Google Scholar 

  • Jing YJ, Lin RC (2015) The VQ motif-containing protein family of plant-specific transcriptional regulators. Plant Physiol 169:371–378

    CAS  Google Scholar 

  • Jones J, Dangl J (2006) The plant immune system. Nature 444:323–329

    CAS  Google Scholar 

  • Kachroo P, Burch-Smith TM, Grant M (2021) An emerging role for chloroplasts in disease and defense. Annu Rev Phytopath 59:423–445

    CAS  Google Scholar 

  • Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signaling of the defense response to microbial pathogens. J Exp Bot 65:2295–2306

    CAS  Google Scholar 

  • Kim ST, Cho KS, Kim SG, Kang SY, Kang KY (2003) A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Mol Cells 16:224–231

    CAS  Google Scholar 

  • Kim C, Meskauskiene R, Zhang S, Lee KP et al (2012) Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. Plant Cell 24:3026–3039

    CAS  Google Scholar 

  • Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Google Scholar 

  • Koch CM, Chiu SF, Akbarpour M et al (2018) A beginner’s guide to analysis of RNA sequencing data. Am J Respir Cell Mol Biol 59:145–157

    CAS  Google Scholar 

  • Kouzai Y, Kimura M, Watanabe M, Kusunoki K, Osaka D et al (2018) Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon. New Phytol 217:771–783

    CAS  Google Scholar 

  • Lai Z, Li Y, Wang F et al (2011) Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell 23:3824–3841

    CAS  Google Scholar 

  • Lefevere H, Bauters L, Gheysen G (2020) Salicylic acid biosynthesis in plants. Front Plant Sci 11:338

    Google Scholar 

  • Li Y, Yang L, Pathak M et al (2011) Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123:973–983

    Google Scholar 

  • Li L, He H, Zou Z, Li YH (2018) A QTL analysis for downy mildew resistance in cucumber inbred line PI 197088. Plant Dis 102:1240–1245

    Google Scholar 

  • Li ZH, Vivek Dogra V, Lee KP, Li RX, Li MY, Li MP, Kim KH (2020) N-terminal acetylation stabilizes SIGMA FACTOR BINDING PROTEIN1 involved in salicylic acid-primed cell death. Plant Physiol 183:358–370

    CAS  Google Scholar 

  • Li LS, Ying J, Li E, Ma T, Li M, Gong LM, Wei G, Zhang Y, Li S (2021) Arabidopsis CBP60b is a central transcriptional activator of immunity. Plant Physiol 186:1645–1659

    CAS  Google Scholar 

  • Li M, Lee KP, Liu T et al (2022) Antagonistic modules regulate photosynthesis-associated nuclear genes via GOLDEN2-LIKE transcription factors. Plant Physiol 188:2308–2324

    CAS  Google Scholar 

  • Liu XP, Lu HW, Liu PN, Miao H, Bai YL, Gu XF, Zhang SP (2020) Identification of novel loci and candidate genes for cucumber downy mildew resistance using GWAS. Plants 9:1659

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Google Scholar 

  • Lv R, Li Z, Li M, Dogra V, Lv SS, Liu RY et al (2019) Uncoupled expression of nuclear and plastid photosynthesis-associated genes contributes to cell death in a lesion mimic mutant. Plant Cell 31:210–230

    CAS  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKks drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653

    CAS  Google Scholar 

  • Morikawa K, Shiina T, Murakami S, Toyoshima Y (2002) Novel nuclear-encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana. FEBS Lett 514:300–304

    CAS  Google Scholar 

  • Morita-Yamamuro C, Tsutsui T, Sato M, Yoshioka H et al (2005) The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol 46:902–912

    CAS  Google Scholar 

  • Narusaka M, Kawai K, Izawa N et al (2008) Gene coding for SigA-binding protein from Arabidopsis appears to be transcriptionally up-regulated by salicylic acid and NPR1-dependent mechanisms. J Gen Plant Pathol 74:345–354

    CAS  Google Scholar 

  • Nie J, Wang Y, He H et al (2015) Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Front Plant Sci 6:1–14

    CAS  Google Scholar 

  • Pan JS, Tan JY, Wang YH, Zheng XY, Owens K, Li DW, Li YH, Weng Y (2018) STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber. Theor Appl Genet 131:1577–1587

    CAS  Google Scholar 

  • Pandey SP, Roccaro M, Schön M, Logemann E, Somssich IE (2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64:912–923

    CAS  Google Scholar 

  • Pecher P, Eschen-Lippold L, Herklotz S, Kuhle K, Naumann K, Bethke G, Uhrig J, Weyhe M, Scheel D, Lee J (2014) The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of ‘VQ-motif’-containing proteins to regulate immune responses. New Phytol 203:592–606

    CAS  Google Scholar 

  • Peng YJ, Yang JF, Li X, Zhang YL (2021) Salicylic acid: biosynthesis and signaling. Annu Rev Plant Biol 72:761–791

    CAS  Google Scholar 

  • Petersen K, Qiu JL, Lütje J et al (2010) Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS ONE 5:e14364

    CAS  Google Scholar 

  • Poplin R, Ruano-Rubio V, DePristo MA et al (2017) Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. https://doi.org/10.1101/201178

  • Savory EA, Granke LL, Quesada-Ocampo LM et al (2011) The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mole Plant Path 12:217–226

    Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defense without specialized immune cells. Nat Rev Immunol 12:89–100

    CAS  Google Scholar 

  • Szczechura W, Staniaszek M, Kłosinska U, Kozik EU (2015) Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (Berk. et Curt.) Rostovzev in cucumber. Russ J Genet 51:974–979

    CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signaling. Nature 448:661–665

    CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Google Scholar 

  • Wallace EC, D’Arcangelo KN, Quesada-Ocampo LM (2020) Population analyses reveal two host-adapted clades of Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew, on commercial and wild cucurbits. Phytopath 110:1578–1587

    CAS  Google Scholar 

  • Wang Y, VandenLangenberg K, Wehner TC et al (2016) QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theor Appl Genet 129:1493–1505

    CAS  Google Scholar 

  • Wang Y, VandenLangenberg K, Wen C et al (2018) QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping-by-sequencing in RIL population. Theor Appl Genet 131:597–611

    CAS  Google Scholar 

  • Wang Y, Tan J, Wu Z et al (2019) STAYGREEN, STAY HEALTHY: a loss-of-susceptibility mutation in the STAYGREEN gene provides durable, broad-spectrum disease resistances for over 50 years of US cucumber production. New Phytol 221:415–430

    CAS  Google Scholar 

  • Wang YH, Bo KL, Gu XF, Pan JS, Li YH, Chen JF, Wen CL, Ren ZH, Ren HZ, Chen XH, Grumet G, Weng Y (2020) Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Hort Res 7:3

    CAS  Google Scholar 

  • Wani SH, Anand S, Singh B, Bohra A, Joshi R (2021) WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep 40:1071–1085

    CAS  Google Scholar 

  • Weigel RR, Bäuscher C, Pfitzner AJ, Pfitzner UM (2001) NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol Biol 46:143–160

    CAS  Google Scholar 

  • Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, Ophir R, Grumet R (2015) QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor Appl Genet 128(9):1747–1763. https://doi.org/10.1007/s00122-015-2544-7

    Article  CAS  Google Scholar 

  • Wu T, Hu E, Xu S et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The Innovation 2: https://doi.org/10.1016/j.xinn.2021.100141

  • Xie YD, Li W, Guo D et al (2010) The Arabidopsis gene sigma factor-binding protein 1 plays a role in the salicylate- and jasmonate-mediated defense responses. Plant Cell Environ 33:828–839

    CAS  Google Scholar 

  • Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008) Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283:26996–27006

    CAS  Google Scholar 

  • Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    CAS  Google Scholar 

  • Yang C, Li W, Cao J, Meng FW, Yu YQ et al (2017) Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J 89:338–353

    CAS  Google Scholar 

  • Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C (2019) The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front Plant Sci 10:1349

    Google Scholar 

  • Yoshioka Y, Sakata Y, Sugiyama M, Fukino N (2014) Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 198:265–276

    CAS  Google Scholar 

  • Yu X, Feng B, He P, Shan L (2017) From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu Rev Phytopathol 55:109–137

    CAS  Google Scholar 

  • Yuan GB, Qian Y, Ren Y, Guan YL, Wu XX, Ge GL, Ding HD (2021a) The role of plant-specific VQ motif-containing proteins: an ever-thickening plot. Plant Physiol Biochem 159:12–16

    CAS  Google Scholar 

  • Yuan MH, Ngou BPM, Ding PT, Xin XF (2021b) PTI-ETI crosstalk: an integrative view of plant immunity. Curr Opin Plant Biol 62:102030

    CAS  Google Scholar 

  • Zhang YX, Xu SH, Ding PT, Wang DM et al (2010) Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc Natl Acad Sci USA 107:18220–18225

    CAS  Google Scholar 

  • Zhang S, Liu MM, Miao H et al (2013) Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251

    CAS  Google Scholar 

  • Zhang H, Zhang L, Ji Y, Cheng Y, Fan BF et al (2022) Arabidopsis SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2 inhibit WRKY75 function in abscisic acid-mediated leaf senescence and seed germination. J Exp Bot 73:182–196

    CAS  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    CAS  Google Scholar 

  • Zheng H, Dong L, Han X, Jin HB et al (2020) The TuMYB46L-TuACO3 module regulates ethylene biosynthesis in einkorn wheat defense to powdery mildew. New Phytolog 225:2526–2541

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Todd Wehner of North Carolina State University (Raleigh, NC), and Dr. Peter Kraan (Nunhems Netherlands BV) for help screen downy mildew resistances. We also thank Ashley Seufzer (USDA-ARS, Madison, WI) for technical help. USDA is an equal opportunity employer.

Funding

This study was supported by the National Institute of Food and Agriculture, US Department of Agriculture, under award numbers 2017–67013-26195 and 2020–51181-32139.

Author information

Authors and Affiliations

Authors

Contributions

JT conducted majority of the reported work. YHW and ZW participated in NIL development, and screening tests for downy mildew resistances. RD contributed to association analysis in natural populations. YQW conceived and supervised the study and wrote the manuscript with JT. All authors reviewed and approved this submission.

Corresponding author

Correspondence to Yiqun Weng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Richard G. F. Visser.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Wang, Y., Dymerski, R. et al. Sigma factor binding protein 1 (CsSIB1) is a putative candidate of the major-effect QTL dm5.3 for downy mildew resistance in cucumber (Cucumis sativus). Theor Appl Genet 135, 4197–4215 (2022). https://doi.org/10.1007/s00122-022-04212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04212-x

Navigation