Skip to main content
Log in

A new NLR gene for resistance to Tomato spotted wilt virus in tomato (Solanum lycopersicum)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A typical NLR gene, Sl5R-1 , which regulates Tomato spotted wilt virus resistance, was fine mapped to a region less than 145 kb in the tomato genome.

Abstract

Tomato spotted wilt is a viral disease caused by Tomato spotted wilt virus (TSWV), which is a devastating disease that affects tomato (Solanum lycopersicum) production worldwide, and the resistance provided by the Sw-5 gene has broken down in some cases. In order to identify additional genes that confer resistance to TSWV, the F2 population was mapped using susceptible (M82) and resistant (H149) tomato lines. After 3 years of mapping, the main quantitative trait locus on chromosome 05 was narrowed to a genomic region of 145 kb and was subsequently identified by the F2 population, with 1971 plants in 2020. This region encompassed 14 candidate genes, and in it was found a gene cluster consisting of three genes (Sl5R-1, Sl5R-2, and Sl5R-3) that code for NBS-LRR proteins. The qRT-PCR and virus-induced gene silencing approach results confirmed that Sl5R-1 is a functional resistance gene for TSWV. Analysis of the Sl5R-1 promoter region revealed that there is a SlTGA9 transcription factor binding site caused by a base deletion in resistant plants, and its expression level was significantly up-regulated in infected resistant plants. Analysis of salicylic acid (SA) and jasmonic acid (JA) levels and the expression of SA- and JA-regulated genes suggest that SlTGA9 interacts or positively regulates Sl5R-1 to affect the SA- and JA-signaling pathways to resist TSWV. These results demonstrate that the identified Sl5R-1 gene regulates TSWV resistance by its own promoter interacting with the transcription factor SlTGA9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Agarwal G, Clevenger J, Kale SM, Wang H, Pandey MK, Choudhary D, Yuan M, Wang X, Culbreath AK, Holbrook CC, Liu X, Varshney RK, Guo B (2019) A recombination bin-map identified a major QTL for resistance to Tomato spotted wilt virus in peanut (Arachis hypogaea). Sci Rep 9:18246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andolfo G, Sanseverino W, Rombauts S, Van de Peer Y, Bradeen JM, Carputo D, Frusciante L, Ercolano MR (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–237

    Article  CAS  PubMed  Google Scholar 

  • Andolfo G, Sanseverino W, Aversano R, Frusciante L, Ercolano MR (2014) Genome-wide identification and analysis of candidate genes for disease resistance in tomato. Mol Breeding 33:227–233

    Article  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Boiteux LS, Giordano LD (1993) Genetic basis of resistance against two tospovirus species in tomato (lycopersicon esculentum). Euphytica 71:151–154

    Article  Google Scholar 

  • Brommonschenkel SH, Tanksley SD (1997) Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol Gen Genet 256:121–126

    Article  CAS  PubMed  Google Scholar 

  • Brommonschenkel SH, Frary A, Frary A, Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe in 13:1130–1138

    Article  CAS  Google Scholar 

  • Budimir J, Treffon K, Nair A, Thurow C, Gatz C (2020) Redox-active cysteines in TGACG-BINDING FACTOR 1 (TGA1) do not play a role in salicylic acid or pathogen-induced expression of TGA1-regulated target genes in Arabidopsis thaliana. New Phytol 230:2420–2432

    Article  PubMed  Google Scholar 

  • Carbonell P, Alonso A, Grau A, Francisco Salinas J, García-Martínez S, José Ruiz J (2018) Twenty years of tomato breeding at EPSO-UMH: transfer resistance from wild types to local landraces—from the first molecular markers to genotyping by sequencing (GBS). Diversity 10:12

    Article  Google Scholar 

  • Chiang KS, Liu HI, Bock CH (2017) A discussion on disease severity index values. Part I: warning on inherent errors and suggestions to maximise accuracy. Ann App Biol 171:139–154

    Article  Google Scholar 

  • Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S (2006) Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Gene Dev 20:1250–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier SM, Moffett P (2009) NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14:521–529

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira AS, Boiteux LS, Kormelink R, Resende RO (2018) The Sw-5 gene cluster: tomato breeding and research toward orthotospovirus disease control. Front Plant Sci 9:1055

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding P, Ding Y (2020) Stories of salicylic acid: a plant defense hormone. Trends Plant Sci 25:549–565

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, Zhang Y (2018) Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173:1454–1467

    Article  CAS  PubMed  Google Scholar 

  • Dockter KG, O’Neil DS, Price DL, Scott J, Stevens MR (2009) Molecular mapping of the Tomato spotted wilt virus resistance gene Sw-7 in tomato. HortScience 44:1123

    Google Scholar 

  • Du C, Jiang J, Zhang H, Zhao T, Yang H, Zhang D, Zhao Z, Xu X, Li J (2020) Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. BMC Genomics 21:250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eybishtz A, Peretz Y, Sade D, Gorovits R, Czosnek H (2010) Tomato yellow leaf curl virusinfection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta 231:537–548

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2020) FAOSTAT data. http://www.fao.org/faostat/en/#data/QC. Accessed 28 Sept 2021

  • Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H, Yan A, Mueller LA (2014) The sol genomics network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Res 43:D1036–D1041

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Pozo N, Rosli Hernan G, Martin Gregory B, Mueller Lukas A (2015) The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant 8:486–488

    Article  CAS  PubMed  Google Scholar 

  • Finlay KW (1953) Inheritance of spotted wilt resistance in the tomato. II. Five genes controlling spotted wilt resistance in four tomato types. Aust J Biol Sci 6:153–163

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Gatz C (2013) From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol Plant Microbe in 26:151–159

    Article  CAS  Google Scholar 

  • Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X, Khurram Z, Zhang Y, Wang T, Fei Z, Ye Z (2010) Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot 61:3563–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanssen IM, Lapidot M, Thomma BPHJ (2010) Emerging viral diseases of tomato crops. Mol Plant Microbe In 23:539–548

    Article  CAS  Google Scholar 

  • Howe GA, Major IT, Koo AJ (2018) Modularity in jasmonate signaling for multistress resilience. Annu Rev Plant Biol 69:387–415

    Article  CAS  PubMed  Google Scholar 

  • Huang C (2021) From player to pawn: viral avirulence factors involved in plant immunity. Viruses 13:688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn M, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, Grube RC, Aftergoot E, Lapidot M, Moyer J (2000) Genetic mapping of the Tsw locus for resistance to the tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol Plant Microbe In 13:673–682

    Article  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395

    Article  PubMed  Google Scholar 

  • Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144:336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kourelis J, van der Hoorn RAL (2018) Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30:285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalitha S (2000) Primer premier 5. Biotech Softw Intern Rep 1:270–272

    Article  Google Scholar 

  • Lanfermeijer FC, Dijkhuis J, Sturre MJG, Hille J, Haan Pd (2003) Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum. Plant Mol Biol 52:1037–1049

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB (2018) Virus taxonomy: the database of the international committee on taxonomy of viruses (ICTV). Nucleic Acids Res 46:D708–D717

    Article  CAS  PubMed  Google Scholar 

  • Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SCM, Ritsema T, Pieterse CMJ (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232:1423–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer YVd, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Khedkar S, Bork P (2021) SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 49:D458–D460

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wan J (2005) SSRHunter: development of a local searching software for SSR sites. Hereditas 27:808–810

    PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Chitwood J, Menda N, Mueller L, Hutton SF (2018) Linkage between the I-3 gene for resistance to Fusarium wilt race 3 and increased sensitivity to bacterial spot in tomato. Theor Appl Genet 131:145–155

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopez C, Aramburu J, Galipienso L, Soler S, Nuez F, Rubio L (2011) Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J Gen Virol 92:210–215

    Article  CAS  PubMed  Google Scholar 

  • Margaria P, Ciuffo M, Pacifico D, Turina M (2007) Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the Tsw gene. Mol Plant Microbe in 20:547–558

    Article  CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Mo N, Shi Y, Qin L, Li Y, Liang Y (2019) Cloning and sequence analysis of Tomato spotted wilt virus coat protein gene in Yangling Region of Shaanxi Province. China Veg 3:36–40

    Google Scholar 

  • Moreira X, Abdala-Roberts L, Castagneyrol B (2018) Interactions between plant defence signalling pathways: evidence from bioassays with insect herbivores and plant pathogens. J Ecol 106:2353–2364

    Article  Google Scholar 

  • Murmu J, Bush MJ, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert PR, Zachgo S, Hepworth SR (2010) Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol 154:1492–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachappa P, Challacombe J, Margolies DC, Nechols JR, Whitfield AE, Rotenberg D (2020) Tomato spotted wilt virus benefits its thrips vector by modulating metabolic and plant defense pathways in tomato. Front Plant Sci 11:575564

    Article  PubMed  PubMed Central  Google Scholar 

  • Noshi M, Mori D, Tanabe N, Maruta T, Shigeoka S (2016) Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flg22. Plant Sci 252:12–21

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan C, Ma Q, Shekasteband R, Stewart KS, Hutton SF, Scott JW, Fei Z, Ling K-S (2019) Comprehensive transcriptome analysis and functional characterization of PR-5 for its involvement in tomato Sw-7 resistance to Tomato spotted wilt tospovirus. Sci Rep 9:7673

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan X, Welti R, Wang X (2008) Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69:1773–1781

    Article  CAS  PubMed  Google Scholar 

  • Price DL, Memmott FD, Hollingsworth A, Scott JW, Stevens MR (2007) Identification of molecular markers linked to new Tomato spotted wilt virus resistance genes in tomato using AFLP analysis. HortScience 42:855

    Google Scholar 

  • Qi S, Zhang S, Islam MM, El-Sappah AH, Zhang F, Liang Y (2021) Natural resources resistance to Tomato spotted wilt virus (TSWV) in tomato (Solanum lycopersicum). Int J Mol Sci 22:10978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roselló S, José Díez M, Nuez F (1998) Genetics of Tomato spotted wilt virus resistance coming from Lycopersicon peruvianum. Eur J Plant Pathol 104:499–509

    Article  Google Scholar 

  • Rosello S, Ricarte B, Diez MJ, Nuez F (2001) Resistance to Tomato spotted wilt virus introgressed from Lycopersicon peruvianum in line UPV 1 may be allelic to Sw-5 and can be used to enhance the resistance of hybrids cultivars. Euphytica 119:357–367

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Scott J, Hutton S, Olson S, Stevens M (2011) Spotty results in our Sw-7 Tomato spotted wilt virus research. Avaible online: 2011 Tomato Disease Workshop meeting abstract, (Accessed on 5 October 2021)

  • Shigenaga AM, Argueso CT (2016) No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 56:174–189

    Article  CAS  PubMed  Google Scholar 

  • Spassova MI, Prins TW, Folkertsma RT, Klein-Lankhorst RM, Hille J, Goldbach RW, Prins M (2001) The tomato gene Sw5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco. Mol Breed 7:151–161

    Article  CAS  Google Scholar 

  • Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the Sw-5 locus for Tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor Appl Genet 90:451–456

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhu Y-X, Balint-Kurti PJ, Wang G-F (2020) Fine-tuning immunity: players and regulators for plant NLRs. Trends Plant Sci 25:695–713

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Yang D-C, Meng Y-Q, Jin J, Gao G (2020) PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res 48:D1104–D1113

    CAS  PubMed  Google Scholar 

  • Tseng Y-C, Tillman BL, Peng Z, Wang J (2016) Identification of major QTLs underlying Tomato spotted wilt virus resistance in peanut cultivar Florida-EP™ “113.” BMC Genom 17:128

    Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Plant Biol 47:177–206

    CAS  Google Scholar 

  • Wang J-E, Liu K-K, Li D-W, Zhang Y-L, Zhao Q, He Y-M, Gong Z-H (2013) A novel peroxidase CanPOD gene of pepper is involved in defense responses to Phytophtora capsici infection as well as abiotic stress tolerance. Int J Mol Sci 14:3158–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, Qin T, Li Y, Che J, Zhang M, Yang B, Liu Y, Zhao K (2014) XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant 8:290–302

    Article  PubMed  Google Scholar 

  • Wang W, Feng B, Zhou J-M, Tang D (2020) Plant immune signaling: advancing on two frontiers. J Integr Plant Biol 62:2–24

    Article  CAS  PubMed  Google Scholar 

  • Xue D-Q, Chen X-L, Zhang H, Chai X-F, Jiang J-B, Xu X-Y, Li J-F (2017) Transcriptome analysis of the Cf-12-Mediated resistance response to Cladosporium fulvum in tomato. Front Plant Sci 7:2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan S, Ning M, Shiming Q, Yan L (2020) Screening of resistant germplasm of Tomato spotted wilt virus and optimization of artificial identification method. China Veg 6:39–43

    Google Scholar 

  • Yuan T, Li X, Xiao J, Wang S (2011) Characterization of Xanthomonas oryzae-responsive cis-acting element in the promoter of rice race-specific susceptibility gene Xa13. Mol Plant 4:300–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Tseng Y-C, Peng Z, Lopez Y, Chen CY, Tillman BL, Phat D, Wang J (2018) Refining a major QTL controlling spotted wilt disease resistance in cultivated peanut (Arachis hypogaea L.) and evaluating its contribution to the resistance variations in peanut. BMC Genom 19:17

    CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the experimental suggestions provided by Dr. Yan Liang and Xiangqiang Zhan. We thank Dr. Xiangqiang Zhan and Dr. Fei Zhang for their technical support.

Funding

This work was supported by the National Key Research and Development Program of China (2016YFD0101703) and Key Research and Development Program of Shaanxi Province (2019ZDLNY03-05) to YL (Yan Liang).

Author information

Authors and Affiliations

Authors

Contributions

SQ engaged in all the experimental processes, data analyses, and interpretation of the experimental results. YS, XW, SZ, YL, IMM, JW, and PZ were involved in the TSWV inoculation of F2 population and the resistance evaluation. YS, XW, SZ, and YL were involved in the analysis of the mapping populations. All authors participated in the discussions on the experimental designs and the result evaluations. SQ wrote the manuscripts. YL, FZ, and XZ conceptualized the research, designed the experiments, and received funding. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Yan Liang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The authors declare that the experiments comply with the current laws of China.

Additional information

Communicated by Reem Aboukhaddour.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 392711 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, S., Shen, Y., Wang, X. et al. A new NLR gene for resistance to Tomato spotted wilt virus in tomato (Solanum lycopersicum). Theor Appl Genet 135, 1493–1509 (2022). https://doi.org/10.1007/s00122-022-04049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04049-4

Navigation