Skip to main content
Log in

TdPm60 identified in wild emmer wheat is an ortholog of Pm60 and constitutes a strong candidate for PmG16 powdery mildew resistance

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

A Correction to this article was published on 07 July 2021

This article has been updated

Abstract

Key message

We identified TdPm60 alleles from wild emmer wheat (WEW), an ortholog of Pm60 from T. urartu, which constitutes a strong candidate for PmG16 mildew resistance. Deployment of PmG16 in Israeli modern bread wheat cultivar Ruta improved the resistance to several local Bgt isolates.

Abstract

Wild emmer wheat (WEW), the tetraploid progenitor of durum and bread wheat, is a valuable genetic resource for resistance to powdery mildew fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). PmG16 gene, derived from WEW, confers high resistance to most tested Bgt isolates. We mapped PmG16 to a 1.4-cM interval between the flanking markers uhw386 and uhw390 on Chromosome 7AL. Based on gene annotation of WEW reference genome Zavitan_V1, 34 predicted genes were identified within the ~ 3.48-Mb target region. Six genes were annotated as associated with disease resistance, of which TRIDC7AG077150.1 was found to be highly similar to Pm60, previously cloned from Triticum urartu, and resides in the same syntenic region. The functional molecular marker (FMM) for Pm60 (M-Pm60-S1) co-segregated with PmG16, suggesting the Pm60 ortholog from WEW (designated here as TdPm60) as a strong candidate for PmG16. Sequence alignment identified only eight SNPs that differentiate between TdPm60 and TuPm60. Furthermore, TdPm60 was found to be present also in the WEW donor lines of the powdery mildew resistance genes MlIW172 and MlIW72, mapped to the same region of Chromosome 7AL as PmG16, suggesting that TdPm60 constitutes a candidate also for these genes. Furthermore, screening of additional 230 WEW accessions with Pm60 specific markers revealed 58 resistant accessions from the Southern Levant that harbored TdPm60, while none of the susceptible accessions showed the presence of this gene. Deployment of PmG16 in Israeli modern bread wheat cultivar Ruta conferred resistance against several local Bgt isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Asif M, Iqbal M, Randhawa H, Spaner D (2014) Wheat: The miracle cereal. Managing and breeding wheat for organic systems. Springer, Cham, pp 1–7

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan KW (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346):93–97

    Article  CAS  PubMed  Google Scholar 

  • Ben-David R, Xie W, Peleg Z, Saranga Y, Dinoor A, Fahima T (2010) Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. Theor Appl Genet 121(3):499–510

    Article  CAS  PubMed  Google Scholar 

  • Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad Sci 106(23):9519–9524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10(1):421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chhuneja P, Yadav B, Stirnweis D, Hurni S, Kaur S, Elkot AF, Keller B, Wicker T, Sehgal S, Gill BS, Singh K (2015) Fine mapping of powdery mildew resistance genes PmTb7A. 1 and PmTb7A. 2 in Triticum boeoticum (Boiss.) using the shotgun sequence assembly of chromosome 7AL. Theor Appl Genetics 128(10):2099–2111

    Article  CAS  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7(12):1243–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169(4):753–763

    Article  CAS  PubMed  Google Scholar 

  • Fatiukha A, Deblieck M, Klymiuk V, Merchuk-Ovnat L, Peleg Z, Ordon F, Fahima T, Korol AB, Saranga Y and Krugman T (2019) Genomic architecture of phenotypic plasticity of complex traits in tetraploid wheat in response to water stress. bioRxiv, 565820

  • Feldman M, Kislev ME (2007) Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Israel J Plant Sci 55(3–4):207–221

    Article  Google Scholar 

  • Han J, Zhang L, Li G, Zhang H, Xie C, Yang Z, Sun Q, Liu Z (2009) Molecular mapping of powdery mildew resistance gene MlWE18 in wheat originated from wild emmer (Triticum turgidum van dicoccoides). Acta Agron Sin 35(10):1791–1797

    Article  CAS  Google Scholar 

  • He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T (2018) Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant 11(6):879–882

    Article  CAS  PubMed  Google Scholar 

  • Hewitt T, Mueller MC, Molnár I, Mascher M, Holušová K, Šimková H, Kunz L, Zhang J, Li J, Bhatt D, Sharma R, Schudel S, Yu G, Steuernagel B, Periyannan S, Wulff B, Ayliffe M, McIntosh R, Keller B, Lagudah E, Zhang P (2020) A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognises its corresponding AvrPm1a effector from Blumeria graminis. New Phytol. https://doi.org/10.1111/nph.17075

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsam SLK, Zeller FJ (1997) Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar ‘Amigo.’ Plant Breeding 116(2):119–122

    Article  Google Scholar 

  • Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 5 Alleles at the Pm1 locus. Theor Appl Genet 96(8):1129–1134

  • Huang L, Raats D, Sela H, Klymiuk V, Lidzbarsky G, Feng L, Krugman T, Fahima T (2016) Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annu Rev Phytopathol 54:279–301

    Article  CAS  PubMed  Google Scholar 

  • Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B (2013) Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J 76(6):957–969

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Xie C, Ni Z, Yang T, Nevo E, Fahima T, Liu Z, Sun Q (2008) Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159(3):385–390

    Article  CAS  Google Scholar 

  • Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJ, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JD, Hein I (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13(1):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahle D, Wickham H (2013) ggmap: Spatial visualization with ggplot2. The R Journal 5(1):144–161

    Article  Google Scholar 

  • Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S, Feng L, Frenkel Z, Krugman T, Lidzbarsky G, Chang W (2018) Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 9(1):1–12

    Article  CAS  Google Scholar 

  • Klymiuk V, Fatiukha A, Huang L, Wei Z, Kis-Papo T, Saranga Y, Krugman T, Fahima T (2019) Durum wheat as a bridge between wild emmer wheat genetic resources and bread wheat. Applications of Genetic and Genomic Research in Cereals. Woodhead Publishing, UK, pp 201–230

  • Klymiuk V, Fatiukha A, Raats D, Bocharova V, Huang L, Feng L, Jaiwar S, Pozniak C, Coaker G, Dubcovsky J, Fahima T (2020) Three previously characterized resistances to yellow rust are encoded by a single locus Wtk1. J Exp Bot 71(9):2561–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Wen Z, Wang J, Fu B, Liu J, Xu H, Kong Z, Zhang L, Jia H, Ma Z (2014) Transfer and mapping of a gene conferring later-growth-stage powdery mildew resistance in a tetraploid wheat accession. Mol Breeding 33(3):669–677

    Article  CAS  Google Scholar 

  • Li M, Dong L, Li B, Wang Z, Xie J, Qiu D, Li Y, Shi W, Yang L, Wu Q, Chen Y (2020) A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol 228:1027–1037

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Fu B, Tang W, Khan NU, Li N, Ma Z (2016) Fine mapping of two wheat powdery mildew resistance genes located at the Pm1 cluster. Plant Genome 9(2):1–9

    Article  CAS  Google Scholar 

  • Ling H, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557(7705):424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu P, Guo L, Wang Z, Li B, Li J, Li Y, Qiu D, Shi W, Yang L, Wang N, Guo G (2020) A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat Commun 11(1):1–11

    CAS  Google Scholar 

  • Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade VM, Milner SG, Himmelbach A (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51(5):885–895

    Article  CAS  PubMed  Google Scholar 

  • Maxwell JJ, Lyerly JH, Cowger C, Marshall D, Brown-Guedira G, Murphy JP (2009) MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. Theor Appl Genet 119(8):1489–1495

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ et al (2019) Catalogue of gene symbols for wheat: 2019 Supplement. Annul Wheat Newsletter 65:98–109

    Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47(12):1494–1498

    Article  CAS  PubMed  Google Scholar 

  • Neu C, Stein N, Keller B (2002) Genetic mapping of the Lr20 Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45(4):737–744

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Zhang D, Han J, Zhao X, Cui Y, Song W, Huo N, Liang Y, Xie J, Wang Z, Wu Q (2014) Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides). PloS One 9(6):e100160

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117(1):103

    Article  CAS  PubMed  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15:8–15

    Article  CAS  Google Scholar 

  • Qiu Y, Zhou R, Kong X, Zhang S, Jia J (2005) Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theor Appl Genet 111(8):1524–1531

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17(1):221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sánchez-Martín J, Widrig V, Herren G, Wicker T, Zbinden H, Gronnier J, Spörri L, Praz CR, Heuberger M, Kolodziej MC, Isaksson J, Steuernagel B, Karafiátová M, Doležel J, Zipfel C, Keller B (2021) Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nat Plants 7(3):327–341

  • Sela H, Ezrati S, Ben-Yehuda P, Manisterski J, Akhunov E, Dvorak J, Breiman A, Korol A (2014) Linkage disequilibrium and association analysis of stripe rust resistance in wild emmer wheat (Triticum turgidum ssp. dicoccoides) population in Israel. Theor Appl Genet 127(11):2453–2463

  • Shen J, Araki H, Chen L, Chen J, Tian D (2006) Unique evolutionary mechanism in R-genes under the presence/absence polymorphism in Arabidopsis thaliana. Genetics 172(2):1243–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Li Y, Zhao F, and Zhou L (2018) Development and application of specific molecular markers for identification of powdery mildew resistance gene Pm60. China patent CN 108950057A

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jørgensen LN, Hovmøller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    Article  CAS  PubMed  Google Scholar 

  • Steuernagel B, Witek K, Krattinger SG, Ramirez-Gonzalez RH, Schoonbeek HJ, Yu G, Baggs E, Witek AI, Yadav I, Krasileva KV, Jones JD (2020) The NLR-Annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol 183(2):468–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Zou S (2017) Wheat powdery mildew resistant gene PmR2 and its clone and application. China patent CN201710632539.2A

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11(6):1187–1194

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands, p 33

  • van Wees S (2008) Phenotypic analysis of Arabidopsis mutants: trypan blue stain for fungi, oomycetes, and dead plant cells. Cold Spring Harbor Protocols 8: pdb-prot4982

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J et al (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Klymiuk V, Bocharova V, Pozniak C, Fahima T (2020) A post-haustorial defense mechanism is mediated by the powdery mildew resistance gene, PmG3M, derived from wild emmer wheat. Pathogens 9(6):418

    Article  CAS  PubMed Central  Google Scholar 

  • Wicker T, Yahiaoui N, Keller B (2007) Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes. Plant J 51(4):631–641

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Ben-David R, Zeng B, Distelfeld A, Röder MS, Dinoor A, Fahima T (2012) Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum Dicoccoides. Theor Appl Genet 124(5):911–922

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Guo G, Wang Y, Hu T, Wang L, Li J, Qiu D, Li Y, Wu Q, Lu P, Chen Y et al (2020) A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol 228:1011–1026

    Article  CAS  PubMed  Google Scholar 

  • Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11(6):874–878

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Li Q, Ma Z, Fan J, Zhou Y (2018) Molecular mapping of powdery mildew resistance gene PmSGD in Chinese wheat landrace Shangeda using RNA-seq with bulk segregant analysis. Mol Breeding 38(3):23

    Article  CAS  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37(4):528–538

    Article  CAS  PubMed  Google Scholar 

  • Yahiaoui N, Kaur N, Keller B (2009) Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J 57(5):846–856

    Article  CAS  PubMed  Google Scholar 

  • Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrells ME (2007) Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor Appl Genet 114(2):351–358

  • Young ND, Tanksley SD (1989) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77(1):95–101

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zheng X, Qiao L, Qiao L, Wang ZJ, Zheng J (2018) Analysis of three types of resistance gene analogs in PmU region from Triticum urartu. J Integr Agric 17(12):2601–2611

    Article  CAS  Google Scholar 

  • Zhang D, Zhu K, Dong L, Liang Y, Li G, Fang T, Guo G, Wu Q, Xie J, Chen Y, Lu P et al (2019) Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. Crop J 7(6):761–770

  • Zhao F, Li Y, Yang B, Yuan H, Jin C, Zhou L, Pei H, Zhao L, Li Y, Zhou Y, Xie J, Shen Q (2020) Powdery mildew disease resistance and marker-assisted screening at the Pm60 locus in wild diploid wheat Triticum urartu. Crop J 8(2):252–259

    Article  Google Scholar 

  • Zhou Y, Zhao X, Li Y, Xu J, Bi A, Kang L, Xu D, Chen H, Wang Y, Wang Y, Liu S, Jiao C, Lu H, Wang J, Yin C, Jiao Y, Lu F (2020) Triticum population sequencing provides insights into wheat adaptation. Nat Genet 52:1412–1422

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Wang L, Rodriguez JC, Deal KR, Avni R, Distelfeld A, McGuire PE, Dvorak J, Luo MC (2019) Improved genome sequence of wild emmer wheat Zavitan with the aid of optical maps. G3: Genes Genomes Genetics 9(3):619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou S, Wang H, Li Y, Kong Z, Tang D (2018) The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol 218(1):298–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.L. was supported by a fellowship provided by the Planning and Budgeting Committee (PBC) of the Israel Council for Higher Education for Outstanding Post-doctoral Fellows from China and India—from 2018 to 2021. Z.W. was supported by the China Scholarship Council for financial support and the University of Haifa Graduate School. The authors wish to thank Dr. Meng Xu for the development of the geographic distribution map, Dr. Tamar Kis-papo and Souad Khalifa for their technical support, Dr. Imad Shams and Tamar Lotan Labs for assistance in microscopy works, and Dr. Rajib Roychowdhury for critical reading and English editing of the manuscript.

Funding

This study was supported by the Israel Science Foundation, grant number 1719/08 and 1366/18.

Author information

Authors and Affiliations

Authors

Contributions

TF, YL, and ZW conceived and designed the study; ZW, AF, and YL developed the critical RILs; AF, ZW, and YL performed data analysis of genotyping by 15 K wheat SNP arrays of Trait Genetics®; HW, ZW, SJ, and YL were involved in marker development and analysis; YL, ZW, and SJ done microscopic observations; ZW, YL, SH, and SJ done phenotyping; YL and SJ contributed to sequencing; TK and YL performed germplasm selection; AF, YL, and HS done bioinformatic analysis of Pm60 locus; YL and TF wrote the manuscript; AF, HS, ZW, TK, and TF reviewed and edited the manuscript; TF was involved in coordination and funding acquisition.

Corresponding author

Correspondence to Tzion Fahima.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by Thomas Miedaner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wei, ZZ., Fatiukha, A. et al. TdPm60 identified in wild emmer wheat is an ortholog of Pm60 and constitutes a strong candidate for PmG16 powdery mildew resistance. Theor Appl Genet 134, 2777–2793 (2021). https://doi.org/10.1007/s00122-021-03858-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03858-3

Navigation